Elements of Orders

Contents

Construction of Elements

O ! 0 : AlgAssVOrd, RngIntElt -> AlgAssVOrdElt
Zero(O) : AlgAssVOrd -> AlgAssVOrdElt
The zero element of the associative order O.
O ! 1 : AlgAssVOrd, RngIntElt -> AlgAssVOrdElt
One(O) : AlgAssVOrd -> AlgAssVOrdElt
The identity element of the associative order O.
O . i : AlgAssVOrd, RngIntElt -> AlgAssVElt
Given an associative order O and an integer i, returns the ith basis element as an order over the base ring. Note that the element 1 may or may not be the first element of a basis. These basis elements are returned as elements of the algebra of O not as elements of O itself.
O ! x : AlgAssVOrd, Any -> AlgAssVOrdElt
Return an element of the associative order O described by x, where x may be a sequence, an element of an associative order, an element coercible into the coefficient ring of O or into the algebra of O.

Arithmetic of Elements

x + y : AlgAssVOrdElt, AlgAssVOrdElt -> AlgAssVOrdElt
The sum of elements x and y of an order of an associative algebra.
x - y : AlgAssVOrdElt, AlgAssVOrdElt -> AlgAssVOrdElt
The difference of elements x and y of an order of an associative algebra.
- x : AlgAssVOrdElt -> AlgAssVOrdElt
The negation of element x of an order of an associative algebra.
x * y : AlgAssVOrdElt, AlgAssVOrdElt -> AlgAssVOrdElt
The product of elements x and y of an associative algebra.
u * c : AlgAssVOrdElt, RngElt -> AlgAssVOrdElt
c * u : RngElt, AlgAssVOrdElt -> AlgAssVOrdElt
The product of the element u of an associative order by the scalar c.
x / y : AlgAssVOrdElt, AlgAssVOrdElt -> AlgAssVElt
The quotient of x by the unit y in the parent algebra.
x div y : AlgAssVOrdElt, AlgAssVOrdElt -> AlgAssVOrdElt
The exact division of x by y in the order containing them.
x ^ n : AlgAssVOrdElt, RngIntElt -> AlgAssVOrdElt
The product of the element x of an associative order with itself n times.

Predicates on Elements

x eq y : AlgAssVOrdElt, AlgAssVOrdElt -> BoolElt
Returns true if and only if the elements x and y are equal.
x ne y : AlgAssVOrdElt, AlgAssVOrdElt -> BoolElt
Returns true if and only if the elements x and y are not equal.
IsZero(x) : AlgAssVOrdElt -> BoolElt
Return true if the element x of an associative order is the zero element.
IsUnit(a) : AlgAssVOrdElt -> BoolElt
Return true if the element x of an associative order is a unit in that order.
IsScalar(x) : AlgAssVOrdElt -> BoolElt, RngElt
Returns true if and only if x is an element of the base ring of the order containing it, and if so returns the coerced element.

Other Operations with Elements

ElementToSequence(x) : AlgAssVOrdElt -> SeqEnum
Eltseq(x) : AlgAssVOrdElt -> SeqEnum
Given an element x of an associative order O, returns the sequence of coordinates of x in terms of the basis of O.
Norm(x) : AlgAssVOrdElt -> RngElt
The norm of the element x of an order as an element of its parent algebra.
Trace(x) : AlgAssVOrdElt -> RngElt
The trace of the element x of an order as an element of its parent algebra.
LeftRepresentationMatrix(e) : AlgAssVOrdElt -> AlgMatElt
RightRepresentationMatrix(e) : AlgAssVOrdElt -> AlgMatElt
The representation matrix describing left (right) multiplication by the element e of an associative order.
RepresentationMatrix(a) : AlgAssVOrdElt -> AlgMatElt
    Side: MonStgElt                     Default: em "Left"
The representation matrix of the element a of an associative order. This describes left multiplication unless the parameter Side is set to "Right".
CharacteristicPolynomial(x) : AlgAssVOrdElt -> RngUPolElt
The characteristic polynomial of the element x of an order as an element of its parent algebra.
MinimalPolynomial(x) : AlgAssVOrdElt -> RngUPolElt
The minimal polynomial of the element x of an order as an element of its parent algebra.
V2.28, 13 July 2023