Bibliography

Cha85
K. Chandrasekharan.
Elliptic Functions, volume 281 of Grundlehren der mathematischen Wissenschaften.
Springer, Berlin, 1985.

Hus87
Dale Husemöller.
Elliptic Curves, volume 111 of Graduate Texts in Mathematics.
Springer, New York, 1987.

KLL84
Ravi Kannan, Arjen K. Lenstra, and László Lovász.
Polynomial Factorization and Nonrandomness of Bits of Algebraic and Some Transcendental Numbers.
In Proceedings of the 16th Symposium on the Theory of Computing (STOC 1984), pages 191--200. ACM, 1984.

Kob84
Neal Koblitz.
Introduction to Elliptic Curves and Modular Forms, volume 97 of Graduate Texts in Mathematics.
Springer, New York, 1984.

Lan87
Serge Lang.
Elliptic Functions, volume 112 of Graduate Texts in Mathematics.
Springer, New York, 1987.

Lew81
Leonard Lewin.
Polylogarithms and associated functions.
North Holland, New York, 1981.

LLL82
Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász.
Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:515--534, 1982.

Neu18
Christian Neurohr.
Efficient integration on Riemann surfaces & applications.
Dissertation, Carl von Ossietzky Universität Oldenburg, 2018.

PR06
Y.-F. S. Pétermann and Jean-Luc Rémy.
Arbitrary Precision Error Analysis for computing ζ(s) with the Cohen-Olivier algorithm: Complete description of the real case and preliminary report on the general case.
Research Report 5852, INRIA, 2006.
http://www.inria.fr/rrrt/rr-5852.html.

Sch82
A. Schönhage.
The fundamental theorem of algebra in terms of computational complexity.
Technical report, Univ. Tübingen, 1982.

vdGOS91
G. van der Geer, F. Oort, and J. Steenbrink, editors.
Arithmetic Algebraic Geometry, volume 89 of Progress in Mathematics, Basel, 1991. Birkhäuser Verlag.

vH01
Mark van Hoeij.
Factoring Polynomials and 0-1 vectors.
In Proceedings of the Cryptography and Lattices Conference (CaLC 2001), Brown University, Providence, RI, USA, March 29-30, 2001, pages 142--146. Springer, 2001.

vH02
Mark van Hoeij.
Factoring Polynomials and the knapsack problem.
J. Number Th., 95(2):167--189, 2002.
http://www.math.fsu.edu/~hoeij/paper/knapsack.ps.

WW15
E. T. Whittaker and G. N. Watson.
A course of modern analysis.
Cambridge University Press, Cambridge, 2nd edition, 1915.

Zag91
Don Zagier.
Polylogarithms, Dedekind Zeta Functions, and the Algebraic K-Theory of Fields.
In van der Geer et al. [vdGOS91], pages 377--390.

V2.28, 13 July 2023