Bibliography
- Cha85
-
K. Chandrasekharan.
Elliptic Functions, volume 281 of Grundlehren der mathematischen Wissenschaften.
Springer, Berlin, 1985.
- Hus87
-
Dale Husemöller.
Elliptic Curves, volume 111 of Graduate Texts in Mathematics.
Springer, New York, 1987.
- KLL84
-
Ravi Kannan, Arjen K. Lenstra, and László Lovász.
Polynomial Factorization and Nonrandomness of Bits of Algebraic and Some Transcendental Numbers.
In Proceedings of the 16th Symposium on the Theory of Computing (STOC 1984), pages 191--200. ACM, 1984.
- Kob84
-
Neal Koblitz.
Introduction to Elliptic Curves and Modular Forms, volume 97 of Graduate Texts in Mathematics.
Springer, New York, 1984.
- Lan87
-
Serge Lang.
Elliptic Functions, volume 112 of Graduate Texts in Mathematics.
Springer, New York, 1987.
- Lew81
-
Leonard Lewin.
Polylogarithms and associated functions.
North Holland, New York, 1981.
- LLL82
-
Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász.
Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:515--534, 1982.
- Neu18
-
Christian Neurohr.
Efficient integration on Riemann surfaces & applications.
Dissertation, Carl von Ossietzky Universität Oldenburg, 2018.
- PR06
-
Y.-F. S. Pétermann and Jean-Luc Rémy.
Arbitrary Precision Error Analysis for computing ζ(s) with the Cohen-Olivier algorithm: Complete description of the real case and
preliminary report on the general case.
Research Report 5852, INRIA, 2006.
http://www.inria.fr/rrrt/rr-5852.html.
- Sch82
-
A. Schönhage.
The fundamental theorem of algebra in terms of computational complexity.
Technical report, Univ. Tübingen, 1982.
- vdGOS91
-
G. van der Geer, F. Oort, and J. Steenbrink, editors.
Arithmetic Algebraic Geometry, volume 89 of Progress in Mathematics, Basel, 1991. Birkhäuser Verlag.
- vH01
-
Mark van Hoeij.
Factoring Polynomials and 0-1 vectors.
In Proceedings of the Cryptography and Lattices Conference (CaLC 2001), Brown University, Providence, RI, USA, March 29-30, 2001, pages
142--146. Springer, 2001.
- vH02
-
Mark van Hoeij.
Factoring Polynomials and the knapsack problem.
J. Number Th., 95(2):167--189, 2002.
http://www.math.fsu.edu/~hoeij/paper/knapsack.ps.
- WW15
-
E. T. Whittaker and G. N. Watson.
A course of modern analysis.
Cambridge University Press, Cambridge, 2nd edition, 1915.
- Zag91
-
Don Zagier.
Polylogarithms, Dedekind Zeta Functions, and the Algebraic K-Theory of Fields.
In van der Geer et al. [vdGOS91], pages 377--390.
V2.28, 13 July 2023