Structure Operations

Contents

Related Structures

Category(Q) : FldRat -> Cat
Parent(Q) : FldRat -> PowerStructure
PrimeField(Q) : FldRat -> FldRat
IntegralBasis(Q) : FldRat -> [ FldRatElt ]
An integral basis for Q as a number field as a sequence of elements of Q (giving the sequence containing 1 for the rational field).
MinimalField(q) : FldRatElt -> FldRat
Return the least cyclotomic field containing the cyclotomic field element q; if q is rational this returns the rational field.
MinimalField(S) : SetEnum -> FldRat
Returns the minimal cyclotomic field containing the cyclotomic field elements in the enumerated set S; this will return the rational field if all elements of S are rational numbers.
BaseField(Q) : FldRat -> FldRat
In analogy to the number fields, returns the coefficient field of Q which will be Q.
Basis(Q) : FldRat -> [FldRatElt]
AbsoluteBasis(Q) : FldRat -> [FldRatElt]
A basis for Q as a {Q}-vector space, i.e. [1].
UnitGroup(Q) : FldRat -> GrpAb, Map
The unit group of the maximal order of Q (i.e. of Z).
ClassGroup(Q) : FldRat -> GrpAb, Map
The class group of the ring of integers Z of Q (which is trivial).
AutomorphismGroup(Q) : FldRat -> GrpPerm, PowMapAut, Map
AutomorphismGroup(Q, Q) : FldRat, FldRat -> GrpPerm, PowMapAut, Map
The group of Q automorphisms of Q, ie. a trivial finitely presented group, the parent structure for Q-automorphisms and a map from the group to actual field automorphisms. In this case, of course the only Q-automorphism will be the identity.
Algebra(Q, Q) : FldRat, Fld -> AlgAss, Map
The field of the rational number form canonically an algebra. This function returns an associative Q-algebra isomorphic to Q and the map from the algebra to Q.
VectorSpace(Q, Q) : FldRat, Fld -> ModTupFld, Map
The field of the rational number form canonically a vector space. This function returns a Q-vector space isomorphic to Q and the map from the vector space to Q.
Decomposition(Q, p) : FldRat, RngIntElt -> []
Decomposition(Q, p) : FldRat, Infty -> []
For a prime p or for the "infinite prime" Infinity() compute the decomposition in Q as a number field. This returns a list of length one containing a 2-tuple describing the splitting behaviour: the first component contains p and the second it's ramification degree, ie. 1.

Numerical Invariants

The functions below are defined for the rational field Q mainly because it often arises as a degenerate case of quadratic or cyclotomic field constructions.

Characteristic(Q) : FldRat -> RngIntElt
Conductor(Q) : FldRat -> RngIntElt
The smallest positive integer n such that Q is contained in the cyclotomic field Q(ζn). For the rational field this is 1.
Degree(Q) : FldRat -> RngIntElt
AbsoluteDegree(Q) : FldRat -> RngIntElt
The degree of Q as a number field (which is 1 for the rational field).
Discriminant(Q) : FldRat -> RngIntElt
AbsoluteDiscriminant(Q) : FldRat -> RngIntElt
The field discriminant of Q (which is 1 for the rational field).
DefiningPolynomial(Q) : FldRat -> RngUPolElt
An irreducible polynomial over Q a root of which generates Q as a number field (for the rational field this returns the linear polynomial x - 1).
Signature(Q) : FldRat -> RngIntElt, RngIntElt
The signature (number of real embeddings and pairs of complex embeddings) of Q.

Ring Predicates and Booleans

IsCommutative(Q) : FldRat -> BoolElt
IsUnitary(Q) : FldRat -> BoolElt
IsFinite(Q) : FldRat -> BoolElt
IsOrdered(Q) : FldRat -> BoolElt
IsField(Q) : FldRat -> BoolElt
IsEuclideanDomain(Q) : FldRat -> BoolElt
IsPID(Q) : FldRat -> BoolElt
IsUFD(Q) : FldRat -> BoolElt
IsDivisionRing(Q) : FldRat -> BoolElt
IsEuclideanRing(Q) : FldRat -> BoolElt
IsPrincipalIdealRing(Q) : FldRat -> BoolElt
IsDomain(Q) : FldRat -> BoolElt
Q eq R : FldRat, FldRat -> BoolElt
Q eq R : FldRat, RngInt -> BoolElt
Q ne R : FldRat, FldRat -> BoolElt
Q ne R : FldRat, RngInt -> BoolElt
V2.28, 13 July 2023