- Introduction
- Ideals of Z
- Z as a Number Field Order
- Decomposition(R, p) : RngInt, RngIntElt -> SeqEnum
- Generator(I) : RngInt -> RngIntElt
- RamificationIndex(I, p) : RngInt, RngIntElt -> RngIntElt
- Degree(I) : RngInt -> RngIntElt
- TwoElementNormal(I) : RngInt -> RngIntElt, RngIntElt
- ChineseRemainderTheorem(I, J, a, b) : RngInt, RngInt, RngIntElt, RngIntElt -> RngIntElt
- Valuation(x, I) : RngIntElt, RngInt -> RngIntElt
- ClassRepresentative(I) : RngInt -> RngInt
- Residue Class Rings
- Elements of Residue Class Rings
- Ideal Operations
- The Unit Group
- Dirichlet Characters
- Creation
- DirichletGroup(N) : RngIntElt -> GrpDrch
- FullDirichletGroup(N) : RngIntElt -> GrpDrch
- DirichletGroup(N,R) : RngIntElt, Rng -> GrpDrch
- DirichletGroup(N,R,z,r) : RngIntElt, Rng, RngElt, RngIntElt -> GrpDrch
- BaseExtend(G, R) : GrpDrch, Rng -> GrpDrch
- AssignNames(~G, S) : GrpDrch, [MonStgElt] ->
- Element Creation
- Attributes of Dirichlet Groups
- Attributes of Elements
- Evaluation
- Arithmetic
- Example
V2.28, 13 July 2023