In this example we
observe that T
2 and W
3 have the same characteristic
polynomial on S
2(Γ
0(33)) as on
the cuspidal subspace of the supersingular
module with p=11, N=3.
> SS := CuspidalSubspace(SupersingularModule(11, 3));
> MF := CuspForms(33, 2);
> Factorization(CharacteristicPolynomial(HeckeOperator(SS, 2)));
[
<$.1 - 1, 1>,
<$.1 + 2, 2>
]
> Factorization(CharacteristicPolynomial(HeckeOperator(MF, 2)));
[
<$.1 - 1, 1>,
<$.1 + 2, 2>
]
> Factorization(CharacteristicPolynomial(AtkinLehnerOperator(SS, 3)));
[
<$.1 - 1, 1>,
<$.1 + 1, 2>
]
> Factorization(CharacteristicPolynomial(AtkinLehnerOperator(MF, 3)));
[
<$.1 - 1, 2>,
<$.1 + 1, 1>
]
The supersingular module with p=3 and N=11 is isomorphic
as a module to the subspace of 3-new cuspforms
in S
2(Γ
0(33)).
> SS := CuspidalSubspace(SupersingularModule(3, 11));
> MF := NewSubspace(CuspForms(33,2), 3);
> HeckeOperator(SS, 17);
[-2]
> HeckeOperator(MF, 17);
[-2]
> AtkinLehnerOperator(SS, 11);
[-1]
> AtkinLehnerOperator(MF, 11);
[-1]