Operators

HeckeOperator(M, n) : ModSS, RngIntElt -> AlgMatElt
Compute a matrix representing the nth Hecke operator Tn with respect to Basis(M) for the supersingular module M.
AtkinLehnerOperator(M, q) : ModSS, RngIntElt -> AlgMatElt
A matrix representing the Atkin-Lehner involution Wq on the supersingular module M. The number q must equal either Prime(M) or AuxiliaryLevel(M).

Example ModSS_Operators (H144E8)

In this example we observe that T2 and W3 have the same characteristic polynomial on S20(33)) as on the cuspidal subspace of the supersingular module with p=11, N=3.
> SS := CuspidalSubspace(SupersingularModule(11, 3));
> MF := CuspForms(33, 2);
> Factorization(CharacteristicPolynomial(HeckeOperator(SS, 2)));
[
    <$.1 - 1, 1>,
    <$.1 + 2, 2>
]
> Factorization(CharacteristicPolynomial(HeckeOperator(MF, 2)));
[
    <$.1 - 1, 1>,
    <$.1 + 2, 2>
]
> Factorization(CharacteristicPolynomial(AtkinLehnerOperator(SS, 3)));
[
    <$.1 - 1, 1>,
    <$.1 + 1, 2>
]
> Factorization(CharacteristicPolynomial(AtkinLehnerOperator(MF, 3)));
[
    <$.1 - 1, 2>,
    <$.1 + 1, 1>
]
The supersingular module with p=3 and N=11 is isomorphic as a module to the subspace of 3-new cuspforms in S20(33)).
> SS := CuspidalSubspace(SupersingularModule(3, 11));
> MF := NewSubspace(CuspForms(33,2), 3);
> HeckeOperator(SS, 17);
[-2]
> HeckeOperator(MF, 17);
[-2]
> AtkinLehnerOperator(SS, 11);
[-1]
> AtkinLehnerOperator(MF, 11);
[-1]
V2.28, 13 July 2023