Constructing Coxeter Groups

It is possible to specify the category GrpFPCox or GrpPermCox when constructing a Coxeter group. If the category is not specified, then a GrpPermCox is returned for finite groups and a GrpFPCox is returned for infinite groups. If the category GrpPermCox is specified for an infinite group, an error is signalled.

CoxeterGroup(GrpFPCox, N) : Cat, MonStgElt -> GrpFPCox
CoxeterGroup(GrpPermCox, N) : Cat, MonStgElt -> GrpFPCox
CoxeterGroup(N) : MonStgElt -> .
The finite or affine Coxeter group with Cartan name given by the string N (see Section Finite and Affine Coxeter Groups).
IrreducibleCoxeterGroup(GrpFPCox, X, n) : Cat, MonStgElt, RngIntElt -> GrpFPCox
IrreducibleCoxeterGroup(GrpPermCox, X, n) : Cat, MonStgElt, RngIntElt -> GrpPermCox
IrreducibleCoxeterGroup(X, n) : MonStgElt, RngIntElt -> .
The finite or affine irreducible Coxeter group with Cartan name Xn, or I2(n) if X="I" (see Section Finite and Affine Coxeter Groups).

Example GrpCox_ConstructByName (H105E1)

> CoxeterGroup(GrpFPCox, "B3");
Coxeter group: Finitely presented group on 3 generators
Relations
    $.1 * $.2 * $.1 = $.2 * $.1 * $.2
    $.1 * $.3 = $.3 * $.1
    ($.2 * $.3)^2 = ($.3 * $.2)^2
    $.1^2 = Id($)
    $.2^2 = Id($)
    $.3^2 = Id($)
> CoxeterGroup("A2B2");
Coxeter group: Permutation group acting on a set of cardinality 14
Order = 48 = 2^4 * 3
    (1, 8)(2, 5)(9, 12)
    (1, 5)(2, 9)(8, 12)
    (3, 10)(4, 6)(11, 13)
    (3, 7)(4, 11)(10, 14)
CoxeterGroup(GrpFPCox, M) : Cat, AlgMatElt -> GrpFPCox
CoxeterGroup(GrpPermCox, M) : Cat, AlgMatElt -> GrpPermCox
CoxeterGroup(M) : AlgMatElt -> .
The Coxeter group with Coxeter matrix M (see Chapter COXETER SYSTEMS).
CoxeterGroup(GrpFPCox, G) : Cat, GrphUnd -> GrpFPCox
CoxeterGroup(GrpPermCox, G) : Cat, GrphUnd -> GrpPermCox
CoxeterGroup(G) : GrphUnd -> .
The Coxeter group with Coxeter graph G (see Chapter COXETER SYSTEMS).
CoxeterGroup(GrpFPCox, C) : Cat, AlgMatElt -> GrpFPCox
CoxeterGroup(GrpPermCox, C) : Cat, AlgMatElt -> GrpPermCox
CoxeterGroup(C) : AlgMatElt -> .
The Coxeter group with Cartan matrix C (see Chapter COXETER SYSTEMS).
CoxeterGroup(GrpFPCox, D) : Cat, GrphDir -> GrpFPCox
CoxeterGroup(GrpPermCox, D) : Cat, GrphDir -> GrpPermCox
CoxeterGroup(D) : GrphDir -> .
The Coxeter group with Dynkin digraph D (see Chapter COXETER SYSTEMS).

Example GrpCox_ConstructFromMatrix (H105E2)

> M := SymmetricMatrix([ 1, 4,1, 3,4,1 ]);
> G<a,b,c> := CoxeterGroup(M);
> G;
Coxeter group: Finitely presented group on 3 generators
Relations
    (a * b)^2 = (b * a)^2
    a * c * a = c * a * c
    (b * c)^2 = (c * b)^2
    a^2 = Id($)
    b^2 = Id($)
    c^2 = Id($)
> M := SymmetricMatrix([ 1, 3,1, 2,3,1 ]);
> G<a,b,c> := CoxeterGroup(M);
> G;
Coxeter group: Permutation group G acting on a set of cardinality 12
Order = 24 = 2^3 * 3
    (1, 7)(2, 4)(5, 6)(8, 10)(11, 12)
    (1, 4)(2, 8)(3, 5)(7, 10)(9, 11)
    (2, 5)(3, 9)(4, 6)(8, 11)(10, 12)
> G<a,b,c> := CoxeterGroup(GrpFPCox, M);
> G;
Coxeter group: Finitely presented group on 3 generators
Relations
    a * b * a = b * a * b
    a * c = c * a
    b * c * b = c * b * c
    a^2 = Id($)
    b^2 = Id($)
    c^2 = Id($)
Note that a Coxeter group does not have a unique Cartan matrix.
> C := CartanMatrix("G2");
> W := CoxeterGroup(GrpFPCox, C);
> CartanMatrix(W);
>> CartanMatrix(W);
               ^
Runtime error in 'CartanMatrix': Bad argument types
Argument types given: GrpFPCox
CoxeterGroup(GrpFPCox, R) : Cat, RootSys -> GrpFPCox
CoxeterGroup(GrpPermCox, R) : Cat, RootSys -> GrpPermCox
CoxeterGroup(R) : RootSys -> .
CoxeterGroup(GrpFPCox, R) : Cat, RootDtm -> GrpFPCox
CoxeterGroup(GrpPermCox, R) : Cat, RootDtm -> GrpPermCox
CoxeterGroup(R) : RootDtm -> .
The finite Coxeter group with root system or root datum R (see Chapters ROOT SYSTEMS and ROOT DATA).

CoxeterGroup(A, B) : Mtrx, Mtrx -> GrpPermCox
The permutation Coxeter group with roots given by the rows of the matrix A and coroots given by the rows of the matrix B. The matrices A and B must have the following properties:
1.
A and B must have same number of rows and the same number of columns; they must be defined over the same field, which must be the rational field, a number field, or a cyclotomic field; the entries must be real;
2.
the number of columns must be at least the number of rows; and
3.
ABt must be the Cartan matrix of a finite Coxeter group.

Example GrpCox_ConstructByRoot (H105E3)

> R := RootDatum("A3" : Isogeny := 2);
> CoxeterGroup(R);
Coxeter group: Permutation group acting on a set of cardinality 12
Order = 24 = 2^3 * 3
    (1, 7)(2, 4)(5, 6)(8, 10)(11, 12)
    (1, 4)(2, 8)(3, 5)(7, 10)(9, 11)
    (2, 5)(3, 9)(4, 6)(8, 11)(10, 12)
V2.28, 13 July 2023