- Su
- SpRing (F) : FldPad -> SpRng
- SuRing (F) : FldPad -> SuRng
- SnuRing (F) : FldPad -> SnuRng
- SnuRing (F, nu) : FldPad, FldRatElt -> SnuRng
- SnuRing (S, nu) : RngSerPow, FldRatElt -> SnuRng
- SnuRing (S) : SpRng -> SnuRng
- SpMatrix (A) : SeqEnum -> SpMat
- SpMatrixSpace (S, r, c) : SpRng, RngIntElt, RngIntElt -> SpMatRng
- SpSpace (v) : SeqEnum -> SpSpc
- SpSpace (M) : SpMat -> SpSpc
- SpSpace (R, n) : SpRng, RngIntElt -> SpSpc
- SpVector (e) : SeqEnum -> SpVec
- su-matrices
- su-module
- SU3
- RecognizeSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
- RecogniseSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
- SU4
- RecognizeSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
- RecogniseSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
- Sub
- sub
- Cartan and Toral Subalgebras (LIE ALGEBRAS)
- Construction of Subalgebras, Ideals and Quotients (LIE ALGEBRAS)
- Operations on Subalgebras and Ideals (LIE ALGEBRAS)
- Semisimple Subalgebras of Simple Lie Algebras (LIE ALGEBRAS)
- Standard Ideals and Subalgebras (LIE ALGEBRAS)
- Standard Series (LIE ALGEBRAS)
- Sub- and Superlattices and Quotients (LATTICES)
- Subalgebras and Quotient Algebras (BASIC ALGEBRAS)
- Subalgebras of su(d) (REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS)
- Subcomplexes and Quotient Complexes (CHAIN COMPLEXES)
- Subgraphs (NETWORKS)
- Submodules and Quotient Modules (MODULES OVER MULTIVARIATE RINGS)
- sub< cat : A | L> : Cat, AlgGrp, List -> AlgGrp, Map
- sub<A | S> : AlgBas, SeqEnum -> AlgBas, Map
- sub< A | L > : AlgGen, List -> AlgGen, Map
- sub<L | A> : AlgLie, List -> AlgLie, Map
- sub<R | L> : AlgMat, List -> AlgMat, Hom(Alg)
- sub<C | L> : Code, List -> Code
- sub<C | L> : Code, List -> Code
- sub<C | L> : CodeAdd, List -> CodeAdd
- sub< F | e1, ..., en > : FldAlg, FldAlgElt, ..., FldAlgElt -> FldAlg, Map
- sub< F | e1, ..., en > : FldAlg, FldAlgElt, ..., FldAlgElt -> FldAlg, Map
- sub<F | d> : FldFin, RngIntElt -> FldFin, Map
- sub<F | f> : FldFin, RngUPolElt[FldFin] -> FldFin, Map
- sub<F | S> : FldFun, [] -> FldFun
- sub<G | L> : Grp, List -> Grp
- sub<A | L> : GrpAb, List -> GrpAb, Map
- sub< G | f > : GrpFP, Hom(Grp) -> GrpFP
- sub< G | L > : GrpFP, List -> GrpFP
- sub<G | L> : GrpGPC, List -> GrpGPC, Map
- sub< G | list > : Grph, List -> Grph, GrphVertSet, GrphEdgeSet
- sub< G | list > : GrphMult, List -> GrphMult, GrphVertSet, GrphEdgeSet
- sub< N | list > : GrphNet, List -> GrphNet, GrphVertSet, GrphEdgeSet
- sub<G | L> : GrpMat, List -> GrpMat
- sub<G | L> : GrpPC, List -> GrpPC, Map
- sub<G | L> : GrpPerm, List -> GrpPerm
- sub<L | S> : Lat, List -> Lat
- sub<L | RHS> : LatNF, Any -> LatNF, Map
- sub< M | S > : ModAlg, [ModAlgElt] -> ModAlg
- sub< C | Q > : ModCpx, SeqEnum[ModAlg] -> ModCpx, MapChn
- sub<M | m> : ModDed, SeqEnum[ModDedElt] -> ModDed, Map
- sub<M | L> : ModMPol, List -> ModMPol
- sub<M | L> : ModRng, List -> ModRng
- sub<V | L> : ModTupFld, List -> ModTupFld
- sub<M | L> : ModTupRng, List -> ModTupRng
- sub< D | : parameters> : DB -> DB
- sub< D | dmin, dmax : parameters> : DB, RngIntElt, RngIntElt -> DB
- sub<A | L: parameters> : GrpAbGen, List -> GrpAbGen
- sub<P | L> : Plane, List -> Plane
- sub< Z | n > : RngInt, RngIntElt -> RngInt
- sub< R | n > : RngIntRes, RngIntResElt -> RngIntRes
- sub< L | a1, ..., an > : RngLocA, RngLocAElt, ..., RngLocAElt -> RngLocA
- sub< O | a1, ..., ar > : RngOrd, RngOrdElt, ..., RngOrdElt -> RngOrd
- sub< O | f > : RngQuad, RngIntElt ->
- sub<R | a> : RootDtm, SetEnum -> RootDtm
- sub<R | s> : RootDtm, SetEnum -> RootDtm
- sub<R | a> : RootSys, SetEnum -> RootSys
- sub<R | s> : RootSys, SetEnum -> RootSys
- sub<S | L1, ..., Lr> : SgpFP, SgpFPElt, ..., SgpFPElt -> SgpFP
- Plane_sub (Example H150E4)
- Plane_sub (Example H150E5)
- RngLocA_sub (Example H49E2)
V2.28, 13 July 2023