- soluble
- soluble-matrix-group
- soluble-quotient
- soluble-quotients
- soluble-radical
- SolubleNormalQuotient
- SolubleQuotient
- SolvableQuotient(G) : Grp -> GrpPC, Map
- SolubleQuotient(G) : Grp -> GrpPC, Map
- SolubleQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
- SolvableQuotient(G): GrpMat -> GrpPC, Map
- SolvableQuotient(G): GrpPerm -> GrpPC, Map, SeqEnum, MonStgElt
- SolvableQuotient(G : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
- SolvableQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
- SolubleQuotient1
- SolubleQuotient2
- SolubleRadical
- SolubleResidual
- SolubleSchreier
- SolubleSubgroups
- Solution
- IntegerSolutionVariables(L) : LP -> SeqEnum
- MaximalIntegerSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
- MaximalSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
- MaximalZeroOneSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
- MinimalIntegerSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
- MinimalSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
- MinimalZeroOneSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
- ModularSolution(A, M) : MtrxSprs, RngIntElt -> ModTupRng
- NumericalSolution(M,w) : Mtrx[RngReCom], Mtrx[RngReCom] -> Mtrx, Mtrx
- SetIntegerSolutionVariables(L, I, m) : LP, SeqEnum[RngIntElt], BoolElt ->
- Solution(L) : LP -> Mtrx, RngIntElt
- Solution(A, W) : ModMatRngElt, ModTupRng -> ModTupRngElt, ModTupRng
- Solution(A, w) : ModMatRngElt, ModTupRng -> ModTupRngElt, ModTupRng
- Solution(A, Q) : ModMatRngElt, [ ModTupRng ] -> [ ModTupRngElt ], ModTupRng
- Solution(A, W) : ModMatRngElt, [ ModTupRng ] -> [ ModTupRngElt ], ModTupRng
- Solution(a, b, m) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt, RngIntElt
- Solution(a, b) : RngIntResElt, RngIntResElt -> RngIntResElt
- Solution(A, B, N) : [RngIntElt], [RngIntElt],[RngIntElt] -> RngIntElt
- Mat_Solution (Example H27E8)
- solution
- solution-equation
- Solutions
- Solvable
- AllSolvableLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum
- IsLocallySolvable(C) : CrvCon -> BoolElt
- IsLocallySolvable(X,pl) : Sch, PlcFunElt -> BoolElt, Pt
- IsLocallySolvable(X, p) : Sch, RngOrdIdl -> BoolElt, Pt
- IsSoluble(L) : AlgLie -> BoolElt
- IsSoluble(D, o, n) : DB, RngIntElt, RngIntElt -> Grp
- IsSoluble(A) : GrpAuto -> BoolElt
- IsSoluble(G) : GrpFin -> BoolElt
- IsSoluble(G) : GrpGPC -> BoolElt
- IsSoluble(G) : GrpMat -> BoolElt
- IsSoluble(G) : GrpPC -> BoolElt
- IsSoluble(G) : GrpPerm -> BoolElt
- IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
- LMGIsSoluble(G) : GrpMat -> BoolElt
- Radical(G) : GrpMat -> GrpMat
- Radical(G) : GrpPerm -> GrpPerm
- SolubleQuotient(G) : Grp -> GrpPC, Map
- SolubleQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
- SolubleRadical(L) : AlgLie -> AlgLie
- SolubleResidual(G) : GrpFin -> GrpFin
- SolubleResidual(G) : GrpMat -> GrpMat
- SolubleResidual(G) : GrpPerm -> GrpPerm
- SolubleSchreier(G: parameters) : GrpPerm ->
- SolubleSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
- SolvableLieAlgebra( F, n, k : parameters) : Fld, RngIntElt, RngIntElt -> AlgLie
- SolvableQuotient(G): GrpMat -> GrpPC, Map
- SolvableQuotient(G): GrpPerm -> GrpPC, Map, SeqEnum, MonStgElt
- SolvableQuotient(G : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
- SolvableQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
- SolvableSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
V2.28, 13 July 2023