- relations
- relations-GrpPsl2
- Relative
- CyclotomicRelativeField(k, K) : FldCyc, FldCyc -> FldNum
- QuadraticDefect(a, p) : RngElt, RngOrdIdl -> RngIntElt
- RelativeDecomposition(M, T) : ModRng, ModRng) -> ModRng, ModRng
- RelativeField(F, L) : FldAlg, FldAlg -> FldAlg
- RelativeField(F, L) : FldNum, FldNum -> FldNum
- RelativeField(L, m) : RngLocA, Map -> RngLocA, Map, Map
- RelativeInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt
- RelativePrecision(x) : FldXPadElt -> RngIntElt
- RelativePrecision(F) : RngDiff -> RngElt
- RelativePrecision(a) : RngLocAElt -> RngExtReElt
- RelativePrecision(x) : RngPadElt -> RngIntElt
- RelativePrecision(f) : RngSerElt -> RngIntElt
- RelativePrecision(e) : RngSerExtElt -> RngIntElt
- RelativePrecisionOfDerivation(F) : RngDiff -> RngElt
- RelativePrecisionOfDerivation(R) : RngDiffOp -> RngElt
- RelativeProj(D) : DivTorElt -> TorVar
- RelativeRank(R) : RootDtm -> RngIntElt
- RelativeRootDatum(R) : RootDtm -> RootDtm
- RelativeRootElement(G,delta,t) : GrpLie, RngIntElt, [FldElt] -> GrpLieElt
- RelativeRootSpace(R) : RootDtm -> ModTupFld, Map
- RelativeRoots(R) : RootDtm -> SetIndx
- RelativeDecomposition
- RelativeField
- RelativeInvariant
- RelativePrecision
- RelativePrecisionOfDerivation
- RelativeProj
- RelativeQuadraticDefect
- RelativeRank
- RelativeRootDatum
- RelativeRootElement
- RelativeRootElts
- RelativeRoots
- RelativeRootSpace
- Relator
- Relators
- relators
- relators-red
- Relevant
- relevant
- relevant-primes
- Remainder
- ChineseRemainderTheorem(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
- CRT(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
- ChineseRemainderTheorem(I1, I2, e1, e2) : RngFunOrdIdl, RngFunOrdIdl, RngFunOrdElt, RngFunOrdElt -> RngFunOrdElt
- ChineseRemainderTheorem(I, J, a, b) : RngInt, RngInt, RngIntElt, RngIntElt -> RngIntElt
- ChineseRemainderTheorem(I1, I2, e1, e2) : RngOrdIdl, RngOrdIdl, RngOrdElt, RngOrdElt -> RngOrdElt
- ChineseRemainderTheorem(S, Z, V): [PlcFunElt], [FldFunGElt], [RngIntElt] -> FldFunElt
- ChineseRemainderTheorem(X, N) : [RngIntElt], [RngIntElt] -> RngIntElt
- ChineseRemainderTheorem(X, M) : [RngUPolElt], [RngUPolElt] -> RngUPolElt
- PseudoRemainder(f, g) : RngUPolElt, RngUPolElt -> RngUPolElt
- Remaining
- Remove
- RemoveEdge(~G, e) : Grph, GrphEdge ->
- RemoveEdges(~G, S) : Grph, { GrphEdge } ->
- G -:= e : Grph, GrphEdge ->
- G -:= e : GrphMult, GrphEdge ->
- G -:= v : Grph, GrphVert ->
- G -:= v : GrphMult, GrphVert ->
- Remove(~A, x) : Assoc, Elt ->
- Remove(~S, i) : SeqEnum, RngIntElt ->
- RemoveColumn(A, j) : Mtrx, RngIntElt -> Mtrx
- RemoveColumn(A, j) : MtrxSprs, RngIntElt -> MtrxSprs
- RemoveConstraint(L, n) : LP, RngIntElt ->
- RemoveFiles(P) : NFSProc -> .
- RemoveIrreducibles(I, C) : [ AlgChtrElt ], [ AlgChtrElt ] -> [ AlgChtrElt ], [ AlgChtrElt ]
- RemoveLinearRelations(X) : Sch -> Sch, MapIsoSch
- RemoveRow(A, i) : Mtrx, RngIntElt -> Mtrx
- RemoveRow(A, i) : MtrxSprs, RngIntElt -> MtrxSprs
- RemoveRowColumn(A, i, j) : Mtrx, RngIntElt -> Mtrx
- RemoveRowColumn(A, i, j) : MtrxSprs, RngIntElt -> MtrxSprs
- RemoveWeight(X,w) : GRK3,RngIntElt -> GRK3
- RemoveWeight(~X,w) : GRSch,RngIntElt ->
- RemoveZeroRows(A) : Mtrx -> Mtrx
- RemoveZeroRows(A) : MtrxSprs -> MtrxSprs
V2.28, 13 July 2023