- polynomial
- polynomial-ring-action
- polynomial-system-solving
- PolynomialAlgebra
- PolynomialRing(R) : Rng -> RngUPol
- PolynomialAlgebra(R) : Rng -> RngUPol
- PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
- PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
- PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
- PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
- PolynomialRing(R, n, T) : Rng, RngIntElt, Tup -> RngMPol
- PolynomialRing(R, Q) : Rng, [ RngIntElt ] -> RngMPol
- PolynomialCoefficient
- PolynomialMap
- PolynomialMultiplication
- PolynomialRing
- PolynomialRing(R) : Rng -> RngUPol
- PolynomialAlgebra(R) : Rng -> RngUPol
- PolynomialRing(model) : ModelG1 -> RngMPol
- PolynomialRing(R : parameters) : Rng -> RngUPol
- PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
- PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
- PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
- PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
- PolynomialRing(R, n, T) : Rng, RngIntElt, Tup -> RngMPol
- PolynomialRing(R, Q) : Rng, [ RngIntElt ] -> RngMPol
- PolynomialRing(R) : RngInvar -> RngMPol
- Polynomials
- Multivariate Polynomials (SYMMETRIC FUNCTIONS)
- AllDefiningPolynomials(f) : MapSch -> SeqEnum
- AllInverseDefiningPolynomials(f) : MapSch -> SeqEnum
- AllIrreduciblePolynomials(F, m) : FldFin, RngIntElt -> { RngUPolElt }
- CentrePolynomials(G) : GrpLie ->
- DefiningPolynomials(F) : FldFun -> [RngUPolElt]
- DefiningPolynomials(H) : HypGeomData -> RngUPolElt, RngUPolElt
- DefiningPolynomials(f) : MapSch -> SeqEnum
- DefiningPolynomials(X) : Sch -> SeqEnum
- FactoredDefiningPolynomials(f) : MapSch -> SeqEnum
- FactoredInverseDefiningPolynomials(f) : MapSch -> SeqEnum
- FactoredMinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]
- FrobeniusTracesToWeilPolynomials(tr, q, i, deg) : SeqEnum, RngIntElt, RngIntElt, RngIntElt -> SeqEnum
- HessePolynomials(n, r, invariants : parameters) : RngIntElt, RngIntElt, [RngElt] -> RngElt, RngElt, RngElt
- HyperellipticPolynomials(E) : CrvEll -> RngUPolElt, RngUPolElt
- HyperellipticPolynomials(C) : CrvHyp -> RngUPolElt, RngUPolElt
- HyperellipticPolynomialsFromShiodaInvariants(JI) : SeqEnum -> SeqEnum, GrpPerm
- InverseDefiningPolynomials(f) : MapSch -> SeqEnum
- IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum
- MinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> RngUPolElt, RngUPolElt
- NewtonPolynomials(L) : RngDiffOpElt -> SeqEnum, SeqEnum
- NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
- PhiIrreduciblePolynomials(F,d) : FldFin, RngIntElt -> SeqEnum[Tup]
- PrimePolynomials(R, d) : RngUPol, RngIntElt -> SeqEnum[ RngUPolElt ]
- RamificationResidualPolynomials(f) : RngUPolElt[FldXPad] -> SeqEnum, NwtnPgon
- RubinSilverbergPolynomials(n, J : parameters) : RngIntElt, RngElt -> RngElt, RngElt
- StarIrreduciblePolynomials(F,d) : FldFin, RngIntElt -> SeqEnum
- TildeIrreduciblePolynomials(q,d) : RngIntElt, RngIntElt -> SeqEnum
- TwistedPolynomials(R) : Rng -> RngUPolTwst
- TwistsOfHyperellipticPolynomials(f: parameters) : RngUPolElt -> SeqEnum[RngUPolElt], GrpPerm
- RngPol_Polynomials (Example H24E2)
- polynomials
V2.28, 13 July 2023