- point
- point-access
- point-arithmetic
- point-block
- point-block-set
- point-category
- point-count
- point-creation
- point-creation_predicates
- point-finding
- point-line
- point-line-set
- point-order
- point-predicates
- point-search
- point_access_curve
- point_access_jacobian
- point_access_kummer
- point_arithmetic_curve
- point_counting
- point_creation_jacobian
- point_creation_jacobian2
- point_creation_jacobian3
- point_enumeration_curve
- point_order_jacobian
- point_predicates
- point_predicates_jacobian
- point_predicates_kummer
- point_reduction
- point_structures_jacobian
- PointArithmetic1
- PointArithmetic2
- PointDegree
- PointDegrees
- Pointed
- PointEnumeration
- PointFinding
- PointGraph
- PointGroup
- AutomorphismGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- PointGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
- PointGroup(D) : Inc -> GrpPerm, GSet
- PointOnRegularModel
- PointPredicates
- PointReduction
- Points
- Points on Riemann Surfaces (RIEMANN SURFACES)
- BasePoints(L) : LinearSys -> SeqEnum
- BasePoints(f) : MapSch -> SetEnum
- BranchPoints(X) : RieSrf -> Tup
- CanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
- ClenshawCurtisIntegrationPoints(N,D) : RngIntElt, RngIntElt -> SeqEnum[FldReElt], SeqEnum[FldReElt]
- CollinearPointsOnPlane(P2,S) : Prj,SetIndx[Pt] -> SeqEnum
- CriticalPoints(HS) : HodgeStruc -> SeqEnum
- DefiningPoints(N) : NwtnPgon -> SeqEnum
- DiscriminantPoints(f) : RngMPolElt -> SeqEnum[FldComElt]
- DivisionPoints(P, n) : PtEll, RngIntElt -> [ PtEll ]
- EckardtPoints(X) : SrfDelPezzo -> Sch
- EllipticPoints(G) : GrpPSL2 -> [SpcHypElt]
- FixedPoints(g,D) : GrpPSL2Elt, SpcHyd -> SeqEnum
- FixedPoints(g,H) : GrpPSL2Elt, SpcHyp -> SeqEnum
- Flexes(C) : Sch -> Sch
- FrobeniusActionOnPoints(S, q : parameters) : [ PtEll ], RngIntElt -> AlgMatElt
- GaussJacobiIntegrationPoints(N,D,a,b) : RngIntElt, RngIntElt, RngReSubElt, RngReSubElt) -> SeqEnum, SeqEnum
- GaussLegendreIntegrationPoints(N,D) : RngIntElt, RngIntElt -> SeqEnum[FldReElt], SeqEnum[FldReElt]
- GoodBasePoints(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum
- GoodBasePoints(G: parameters) : GrpMat -> []
- HasPointsEverywhereLocally(f,q) : RngUPolElt, RngIntElt -> BoolElt
- HasPointsOverExtension(X) : Sch -> BoolElt
- HasSingularPointsOverExtension(C) : Sch -> BoolElt
- HeegnerPoints(E, D : parameters) : CrvEll[FldRat], RngIntElt -> Tup, PtEll
- IntegralPoints(E) : CrvEll[FldNum] -> [ PtEll ]
- IntegralPoints(E) : CrvEll[FldRat] -> [ PtEll ]
- IntegralQuarticPoints(Q) : [ RngIntElt ] -> [ SeqEnum ]
- IntegralQuarticPoints(Q, P) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
- IsolatedPointsFinder(S,P) : Sch, SeqEnum -> List
- IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum
- IsolatedPointsLifter(S,P) : Sch, SeqEnum -> BoolElt, Pt
- ModuliPoints(X,E) : CrvMod, CrvEll -> SeqEnum
- NonCuspidalQRationalPoints(CN,N) : Crv, RngIntElt -> SeqEnum
- NumberOfPoints(D) : Inc -> RngInt
- NumberOfPoints(P) : Plane -> RngIntElt
- NumberOfPoints(P) : TorPol -> RngIntElt
- NumberOfPointsAtInfinity(C) : CrvHyp -> RngIntElt
- NumberOfPointsOnCubicSurface(f) : RngMPolElt -> RngIntElt, RngIntElt
- NumberOfPointsOnMinimalResolutionFibre(dsd) : DesingData -> RngIntElt
- NumberOfPointsOnResolutionFibre(dsd) : DesingData -> RngIntElt
- NumberOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> RngIntElt
- NumberOfRationalPoints(A) : ModAbVar -> RngIntElt, RngIntElt
- NumbersOfPointsOnDegree2K3Surface(f6,p,d) : RngMPolElt, RngIntElt, RngIntElt -> SeqEnum
- NumbersOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> [ RngIntElt ], [ RngIntElt ]
- Points(E) : CrvEll -> @ PtEll @
- Points(C) : CrvHyp -> SetIndx
- Points(C, x) : CrvHyp, RngElt -> SetIndx
- Points(B) : GRBskt -> SeqEnum
- Points(D) : Inc -> { IncPt }
- Points(D) : IncGeom -> SetIndx
- Points(J) : JacHyp -> SetIndx
- Points(J) : JacHyp -> SetIndx
- Points(J, a, d) : JacHyp, RngUPolElt, RngIntElt -> SetIndx
- Points(J, P) : JacHyp, SrfKumPt -> SetIndx
- Points(C : parameters) : CrvCon -> SetIndx
- Points(C : parameters) : CrvHyp -> [Pt]
- Points(P) : Plane -> { PlanePt }
- Points(G) : SchGrpEll -> SetIndx
- Points(H, x) : SetPtEll, RngElt -> [ PtEll ]
- Points(K,[x1, x2, x3]) : SrfKum, [RngElt] -> SetIndx
- Points(C,H,h) : TorCon,TorLatElt,FldRatElt -> SetEnum
- Points(P) : TorPol -> SeqEnum[TorLatElt]
- PointsAtInfinity(C) : Crv -> SetEnum
- PointsAtInfinity(C) : CrvHyp -> SetIndx
- PointsAtInfinity(C) : CrvHyp -> SetIndx
- PointsAtInfinity(H) : SetPtEll -> @ PtEll @
- PointsCubicModel(C, B : parameters) : Crv, RngIntElt -> SeqEnum
- PointsInGeneralPosition(P2,S) : Prj,SetIndx[Pt] -> BoolElt,SeqEnum,SeqEnum,SeqEnum
- PointsKnown(C) : CrvHyp -> BoolElt
- PointsOverDiscriminantPoint(X, k) : RieSrf, RngIntElt -> SeqEnum[RieSrfPt]
- PointsOverSplittingField(Z) : Clstr -> SetEnum
- PointsQI(C, H) : Crv, RngIntElt -> [Pt]
- PointsQI(C, B : parameters) : Crv, RngIntElt -> [Pt]
- PossibleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
- PossibleSimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
- RamificationPoints(X) : RieSrf -> SeqEnum[RieSrfPt]
- RationalPoints(f,q) : RngUPolElt, RngIntElt -> SetIndx
- RationalPoints(Z) : Sch -> SetEnum
- RationalPoints(X) : Sch -> SetIndx
- RationalPoints(K, Q) : SrfKum, [RngElt] -> SetIndx
- RationalPointsByFibration(X) : Sch -> SetIndx
- SIntegralDesbovesPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
- SIntegralLjunggrenPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
- SIntegralPoints(E, S) : CrvEll, SeqEnum -> [ PtEll ]
- SIntegralQuarticPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
- SimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
- SingularPoints(X) : RieSrf -> SeqEnum
- SingularPoints(C) : Sch -> SetIndx
- TanhSinhIntegrationPoints(N,h) : RngIntElt, FldReElt -> SeqEnum[FldReElt], SeqEnum[FldReElt], SeqEnum[FldReElt]
- ThreeTorsionPoints(E : parameters) : CrvEll -> Tup
- WeierstrassPlaces(D) : DivCrvElt -> SeqEnum
V2.28, 13 July 2023