- lie
- lie-introduction
- lie-reps
- lie_alg
- lie_alg_km
- liealg
- LieAlgebra
- LieAlgebra(M) : AlgMatLie -> AlgLie, Map
- Algebra(M) : AlgMatLie -> AlgLie, Map
- LieAlgebra(A) : AlgAss -> AlgGen, Map
- LieAlgebra(A) : AlgAss -> AlgLie
- LieAlgebra(A) : AlgAss -> AlgLie, Map
- LieAlgebra(A) : AlgMat -> AlgLie
- LieAlgebra(C, k) : AlgMatElt, Rng -> AlgLie
- LieAlgebra(G) : GrpLie -> AlgLie, Map
- LieAlgebra(G) : GrpLie -> AlgLie, Map
- LieAlgebra(W, R) : GrpMat, Rng -> AlgLie
- LieAlgebra(W, R) : GrpPermCox, Rng -> AlgLie
- LieAlgebra(T, k) : MonStgElt, Rng -> AlgLie
- LieAlgebra(N, k, p) : MonStgElt, Rng, GrpPermElt -> AlgLie
- LieAlgebra<R, n | Q : parameters > : Rng, RngIntElt, SeqEnum -> AlgLie
- LieAlgebra<R, n | T : parameters > : Rng, RngIntElt, SeqEnum -> AlgLie
- LieAlgebra< t | T : parameters > : SeqEnum, SeqEnum -> AlgLie
- LieAlgebra< R, n | Q > : Rng, RngIntElt, SeqEnum -> AlgLie
- LieAlgebra(R, k) : RootDtm, Rng -> AlgLie
- LieAlgebra(R, k) : RootSys, Rng -> AlgLie
- LieAlgebra(R) : [ AlgFPLieElt ] -> AlgLie, SeqEnum, SeqEnum, Map
- AlgLie_LieAlgebra (Example H107E6)
- LieAlgebraCons
- LieAlgebraHomorphism
- LieAlgebraIsogeny
- LieAlgebraOfDerivations
- LieAlgebraQuotient
- LieAlgebraQuotientPullback
- LieBracket
- lieC3
- LieCharacteristic
- LieConstant
- LieConstant_epsilon(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_eta(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_N(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_p(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_q(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_M(R, r, s, i) : RootDtm, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
- LieConstant_C(R, i, j, r, s) : RootDtm, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
- lieG2
- LiEMaximalSubgroups
- LieModules
- LieRepresentationDecomposition
- LieRewrite
- LieRing
- LieRootMatrix
- LieType
- LieTypeGenerators
- LieTypeRewrite
- TwistedLieTypeRewrite(t,r,q,X,Y,g) : MonStgElt,RngIntElt,RngIntElt,SeqEnum,SeqEnum,GrpMatElt -> BoolElt, GrpSLPElt
- LieTypeRewrite(t,r,q,X,Y,g) : MonStgElt,RngIntElt,RngIntElt,SeqEnum,SeqEnum,GrpMatElt -> BoolElt, GrpSLPElt
- Lift
- CoerceAndLift(S, x) : StrAnyXPad, Any -> StrAnyXPadElt
- CoerceAndLift(S, x) : StrAnyXPad, Any -> StrAnyXPadElt
- GonalityPreservingLift(C) : Crv[FldFun] -> RngUPolElt, AlgMatElt, AlgMatElt
- HeckeLift(chi) : GrpDrchNFElt -> GrpHeckeElt, GrpHecke
- HenselLift(f, R, k) : RngUPolElt, FldReElt, RngIntElt -> FldReElt
- HenselLift(f, x) : RngUPolElt, RngPadElt -> RngPadElt
- HenselLift(f, s, P) : RngUPolElt, [ RngUPolElt ], RngUPol -> [ RngUPolElt ]
- HenselLift(f, s) : RngUPolElt, [RngUPolElt] -> [RngUPolElt]
- HenselLift(f, L) : RngUPolElt[RngSer], SeqEnum[RngUPolElt] -> [RngUPolElt]
- InflationMapImage(M, c) : Map, UserProgram -> UserProgram
- IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum
- Lift(a, P) : RngElt, PlcCrvElt -> FldFunFracSchElt
- Lift(a, P) : RngElt, PlcFunElt -> FldFunElt
- Lift(a, P) : RngElt, PlcFunElt -> FldFunElt
- LiftCharacter(c, f, G) : AlgChtrElt, Map, Grp -> AlgChtrElt
- LiftCharacter(c, f, G) : AlgChtrElt, Map, Grp -> AlgChtrElt
- LiftCharacters(T, f, G) : [AlgChtrElt], Map, Grp -> AlgChtrElt
- LiftCharacters(T, f, G) : [AlgChtrElt], Map, Grp -> AlgChtrElt
- LiftDescendant(C) : CrvHyp -> SeqEnum[ CrvHyp ], List, MapSch
- LiftHomomorphism(x, n) : ModAlgElt, RngIntElt -> ModMatFldElt
- LiftHomomorphism(X, N) : SeqEnum[ModAlgElt], SeqEnum[RngIntElt] -> ModMatFldElt
- LiftMap(m, R) : Map, RngDiffOp -> Map
- LiftPoint(P, n) : Pt, RngIntElt -> Pt
- LiftToChainmap(P,f,d) : ModCpx, Mtrx, RngIntElt -> MapChn
- SubgroupsLift(G, A, B, Q: parameters) : GrpMat, GrpMat, GrpMat, SeqEnum -> SeqEnum
- SubgroupsLift(G, A, B, Q: parameters) : GrpPerm, GrpPerm, GrpPerm, SeqEnum -> SeqEnum
- TeichmuellerLift(u, R) : FldFinElt, RngPadResExt -> RngPadResExtElt
V2.28, 13 July 2023