- K
- k
- k-key
- K3
- Degree 2 K3 Surfaces (ALGEBRAIC SURFACES)
- Introduction (ALGEBRAIC SURFACES)
- CreateK3Data(g) : RngIntElt -> SeqEnum
- DegreeTwoK3Surface(f) : RngMPolElt -> Srfc
- EllipticFibrationRRSpaceDeg2K3(S,divlst,exdivlst) : Srfc, SeqEnum, SeqEnum -> SeqEnum[RngMPolElt],RngMPolElt
- EllipticGeneralFibreDeg2K3(S,B,secs) : Srfc, SeqEnum[RngMPolElt], SeqEnum[Sch] -> Crv,SeqEnum,SeqEnum
- IntersectionMatrixOnDegree2K3(S, Ds) : Srfc, SeqEnum[Sch] -> Mtrx
- K3Copy(X) : GRK3 -> GRK3
- K3Database() : -> DB
- K3Surface(D,i) : DB,RngIntElt -> GRK3
- K3Surface(D,g,B) : DB,RngIntElt,GRBskt -> GRK3
- K3Surface(D,g,i) : DB,RngIntElt,RngIntElt -> GRK3
- K3Surface(D,g1,g2,i) : DB,RngIntElt,RngIntElt,RngIntElt -> GRK3
- K3Surface(D,W) : DB,SeqEnum -> GRK3
- K3Surface(D,Q,i) : DB,SeqEnum,RngIntElt -> GRK3
- K3Surface(x) : Rec -> GRK3
- K3Surface(g,B) : RngIntElt,GRBskt -> GRK3
- K3Surface(x) : Tup -> GRK3
- K3SurfaceRaw(D,i) : DB,RngIntElt -> Tup
- K3SurfaceToRecord(X) : GRK3 -> Rec
- NumbersOfPointsOnDegree2K3Surface(f6,p,d) : RngMPolElt, RngIntElt, RngIntElt -> SeqEnum
- WeilPolynomialOfDegree2K3Surface(f6) : RngMPolElt -> RngUPolElt, RngUPolElt
- WriteK3Data(Q,F) : SeqEnum,MonStgElt ->
- k3
- k3-use
- K3Copy
- K3Database
- k3db
- k3db-ex1
- K3Surface
- K3Surface(D,i) : DB,RngIntElt -> GRK3
- K3Surface(D,g,B) : DB,RngIntElt,GRBskt -> GRK3
- K3Surface(D,g,i) : DB,RngIntElt,RngIntElt -> GRK3
- K3Surface(D,g1,g2,i) : DB,RngIntElt,RngIntElt,RngIntElt -> GRK3
- K3Surface(D,W) : DB,SeqEnum -> GRK3
- K3Surface(D,Q,i) : DB,SeqEnum,RngIntElt -> GRK3
- K3Surface(x) : Rec -> GRK3
- K3Surface(g,B) : RngIntElt,GRBskt -> GRK3
- K3Surface(x) : Tup -> GRK3
- K3SurfaceRaw
- K3SurfaceToRecord
- K[G]
- K[G]-module
- Kac
- KacMoodyClass
- KacMoodyClasses
- Kant
- KArc
- kArc
- kashiwara
- kashiwara-ops
- KBessel
- KBessel2
- KBinomial
- KCotensor
- KCotensorSpace
- KCube
- KCubeGraph
- KDegree
- KEdge
- kedlaya
- kedlaya2
- Kerdock
- KerdockCode
V2.28, 13 July 2023