About
Calculator
Ordering
FAQ
Download
Documentation
Citations
Conferences
Links
Contact
CAG
Login
Magma
Computer • algebra
Documentation
Contents
Index (c)
Search
control-M-key
<Ctrl>-M
control-N-key
<Ctrl>-N
control-P-key
<Ctrl>-P
control-space-key
<Ctrl>-space
control-U-key
<Ctrl>-U
control-V-key
<Ctrl>-V<char>
control-W-key
<Ctrl>-W
control-X-key
<Ctrl>-X
control-Y-key
<Ctrl>-Y
control-Z-key
<Ctrl>-Z
ControlExtn
GrpFP_ControlExtn (Example H78E13)
Controlled
ControlledNot(e, B, k) : HilbSpcElt, RngIntElt, RngIntElt -> HilbSpcElt
ControlledNot
ControlledNot(e, B, k) : HilbSpcElt, RngIntElt, RngIntElt -> HilbSpcElt
conv
Converse (MULTIGRAPHS)
Converting between Simple Graphs and Multigraphs (MULTIGRAPHS)
Orientated Graphs (MULTIGRAPHS)
Design_conv (Example H156E9)
conventions
Conventions (LOCAL GALOIS REPRESENTATIONS)
Convergents
Convergents(s) : [ RngIntElt ] -> ModMatRngElt
Converse
Converse(G) : GrphDir -> GrphDir
Converse(G) : GrphMultDir -> GrphMultDir
Conversion
GrpRWS_Conversion (Example H81E10)
MonRWS_Conversion (Example H85E12)
conversion
Automatic Conversions (BRAID GROUPS)
Character Conversion (INPUT AND OUTPUT)
Conversion between Categories (POLYCYCLIC GROUPS)
Conversion Functions (INCIDENCE GEOMETRY)
Conversion Functions (INCIDENCE STRUCTURES AND DESIGNS)
Conversion Functions (MULTIGRAPHS)
Conversion Functions (REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS)
Conversion to a Finitely Presented Group (GROUPS DEFINED BY REWRITE SYSTEMS)
Conversion to a Finitely Presented Monoid (MONOIDS GIVEN BY REWRITE SYSTEMS)
Conversion to a PC-Group (MATRIX GROUPS OVER GENERAL RINGS)
Conversion to and from Dense Matrices (SPARSE MATRICES)
Conversion to FP-Groups (FINITELY PRESENTED GROUPS)
Conversion to Number Fields (CLASS FIELD THEORY)
Conversions (REAL AND COMPLEX FIELDS)
Converting between Graphs and Digraphs (GRAPHS)
Creation and Conversion (RING OF INTEGERS)
Element Conversions (RING OF INTEGERS)
Sets from Structures (SETS)
conversion-functions
Conversion Functions (INCIDENCE GEOMETRY)
conversion-graph-digraph
Converting between Graphs and Digraphs (GRAPHS)
conversions
Constructions and Conversions (QUADRATIC FORMS)
Convert
ConvertFromManinSymbol(M, x) : ModSym, Tup -> ModSymElt
ConvertToCWIFormat(P, pb) : NFSProc, RngIntElt -> .;
ConvertFromManinSymbol
ConvertFromManinSymbol(M, x) : ModSym, Tup -> ModSymElt
ConvertToCWIFormat
ConvertToCWIFormat(P, pb) : NFSProc, RngIntElt -> .;
Convex
IsStrictlyConvex(C) : TorCon -> BoolElt
Convolution
Convolution(f, g) : RngSerElt, RngSerElt -> RngSerElt
Conway
ConwayPolynomial(p, n) : RngIntElt, RngIntElt -> RngUPolElt
ExistsConwayPolynomial(p, n) : RngIntElt, RngIntElt -> BoolElt, RngUPolElt
IsConway(F) : FldFin -> BoolElt
conway
Conway Polynomials (FINITE FIELDS)
ConwayPolynomial
ConwayPolynomial(p, n) : RngIntElt, RngIntElt -> RngUPolElt
Coordelt
Coordelt(L, C) : Lat, [ RngIntElt ] -> LatElt
CoordinatesToElement(L, C) : Lat, [ RngIntElt ] -> LatElt
Coordinate
CanonicalCoordinateIdeal(S) : Srfc -> RngMPol
CoordinateLattice(L) : Lat -> Lat
CoordinateMatrix(I) : RngMPol -> Matrix
CoordinateMatrix(I) : RngMPolLoc -> Matrix
CoordinateRing(L) : Lat -> RngInt
CoordinateRing(A) : Sch -> Rng
CoordinateRing(C) : Sch -> Rng
CoordinateRing(A) : Sch -> RngMPol
CoordinateRing(X) : Sch -> RngMPol
CoordinateSpace(L) : Lat -> ModTupFld, Map
CoordinateVector(L, v) : Lat, LatElt -> LatElt
CoordinateVector(v) : LatElt -> LatElt
p[i] : Pt, RngIntElt -> RngElt
p[i] : Pt, RngIntElt -> RngElt
CoordinateLattice
CoordinateLattice(L) : Lat -> Lat
CoordinateMatrix
CoordinateMatrix(I) : RngMPol -> Matrix
CoordinateMatrix(I) : RngMPolLoc -> Matrix
CoordinateRing
CoordinateRing(L) : Lat -> RngInt
CoordinateRing(A) : Sch -> Rng
CoordinateRing(C) : Sch -> Rng
CoordinateRing(A) : Sch -> RngMPol
CoordinateRing(X) : Sch -> RngMPol
Contents
Index (c)
Search
V2.28, 13 July 2023