- coherent-sheaves
- coho-example
- coho-module1
- coho-module2
- coho-module2cont
- coho-module3
- coho-module3cont
- coho-module4
- coho-module4-cont
- cohom
- Cohomological
- CohomologicalDimension(G, M, i) : GrpFin, ModRng, RngIntElt -> RngIntElt
- CohomologicalDimension(G, M, i) : GrpPerm, ModRng, RngIntElt -> RngIntElt
- CohomologicalDimension(G, M, n) : GrpPerm, ModRng, RngIntElt -> RngIntElt
- CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
- CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
- CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
- CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
- CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
- CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
- Cohomological Dimension
- CohomologicalDimension
- CohomologicalDimension(G, M, i) : GrpFin, ModRng, RngIntElt -> RngIntElt
- CohomologicalDimension(G, M, i) : GrpPerm, ModRng, RngIntElt -> RngIntElt
- CohomologicalDimension(G, M, n) : GrpPerm, ModRng, RngIntElt -> RngIntElt
- CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
- CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
- CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
- CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
- CohomologicalDimensions
- Cohomologous
- Cohomology
- ChainmapToCohomology(f,CR) : MapChn, Rec -> RngElt
- Cohomology(A, n) : GGrp, RngIntElt -> SetEnum[OneCoC]
- CohomologyClass(alpha) : OneCoC -> SetIndx[OneCoC]
- CohomologyDimension(M,r,n) : ModMPolGrd, RngIntElt, RngIntElt -> RngIntElt
- CohomologyDimension(S, r, n) : ShfCoh, RngIntElt, RngIntElt -> RngIntElt
- CohomologyElementToChainMap(P, d, n) : ModCpx ,RngIntElt, RngIntElt -> MapChn
- CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
- CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
- CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn
- CohomologyGroup(CM, n) : ModCoho, RngIntElt -> ModTupRng
- CohomologyGroup(CM, n) : ModCoho, RngIntElt -> ModTupRng
- CohomologyLeftModuleGenerators(P, CP, Q) : Tup, Tup, Tup -> Tup
- CohomologyModule(A) : FldAb -> ModGrp, Map, Map, Map
- CohomologyModule(G, A, M) : GrpPerm, GrpAb, Any -> ModCoho
- CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
- CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
- CohomologyModule(G, Q, T) : GrpPerm, SeqEnum, SeqEnum -> ModCoho
- CohomologyRightModuleGenerators(P, Q, CQ) : Rec, Rec, Rec -> Rec
- CohomologyRing(k, n) : ModAlgBas, RngIntElt -> Rec
- CohomologyRingGenerators(P) : Rec -> Rec
- CohomologyRingQuotient(CR) : Rec -> Rng,Map
- CohomologyToChainmap(xi,CR,P) : RngElt, Rec, ModCpx -> MapChn
- DegreesOfCohomologyGenerators(C) : Rec -> SeqEnum
- ExtendedCohomologyClass(alpha) : OneCoC -> SetEnum[OneCoC]
- GaloisCohomology(A) : GGrp -> SeqEnum
- OneCohomology(A) : GGrp -> SetEnum[OneCoC]
- SUnitCohomologyProcess(S, U) : {RngOrdIdl}, GrpPerm -> {1}
- SimpleCohomologyDimensions(M) : ModAlg -> SeqEnum
- GrpPerm_Cohomology (Example H64E37)
- cohomology
V2.28, 13 July 2023