- CheckPolynomial
- CheckWeilPolynomial
- Chern
- ChernNumber
- Chev
- Chevalley
- AdjointChevalleyGroup(t,r,q) : MonStgElt,RngIntElt,RngIntElt -> GrpMat
- ChevalleyBasis(L) : AlgLie -> [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ]
- ChevalleyBasis(L, H, R) : AlgLie, AlgLie, RootDtm -> [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ]
- ChevalleyForm(ρ,A) : Map[GrpLie,GrpMat], GrpMatElt -> SeqEnum, FldFinElt
- ChevalleyGroup(X, n, K: parameters) : MonStgElt, RngIntElt, FldFin -> GrpMat
- ChevalleyOrderPolynomial(type, n: parameters) : MonStgElt, RngIntElt -> RngUPolElt
- FactoredChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
- IsChevalleyBasis(L, R, x, y, h) : AlgLie, RootDtm, [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ] -> BoolElt, [ Tup ]
- chevalley
- ChevalleyBasis
- ChevalleyBasisSmallChar
- ChevalleyForm
- ChevalleyGroup
- ChevalleyGroupOrder
- ChevalleyOrderPolynomial
- ChevForm
- chevorder
- chi
- Chief
- ChiefFactors(G) : GrpMat -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
- ChiefFactors(G) : GrpPerm -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
- ChiefSeries(G) : GrpAb -> [GrpAb]
- ChiefSeries(G) : GrpMat -> [ GrpMat ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
- ChiefSeries(G) : GrpPC -> [GrpPC]
- ChiefSeries(G) : GrpPerm -> [ GrpPerm ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
- ChiefFactors
- ChiefSeries
- Chien
- ChienChoyCode
- Children
- Chinese
- ChineseRemainderTheorem(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
- CRT(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
- ChineseRemainderTheorem(I1, I2, e1, e2) : RngFunOrdIdl, RngFunOrdIdl, RngFunOrdElt, RngFunOrdElt -> RngFunOrdElt
- ChineseRemainderTheorem(I, J, a, b) : RngInt, RngInt, RngIntElt, RngIntElt -> RngIntElt
- ChineseRemainderTheorem(I1, I2, e1, e2) : RngOrdIdl, RngOrdIdl, RngOrdElt, RngOrdElt -> RngOrdElt
- ChineseRemainderTheorem(S, Z, V): [PlcFunElt], [FldFunGElt], [RngIntElt] -> FldFunElt
- ChineseRemainderTheorem(X, N) : [RngIntElt], [RngIntElt] -> RngIntElt
- ChineseRemainderTheorem(X, M) : [RngUPolElt], [RngUPolElt] -> RngUPolElt
- ChineseRemainderTheorem
- ChineseRemainderTheorem(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
- CRT(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
- ChineseRemainderTheorem(I1, I2, e1, e2) : RngFunOrdIdl, RngFunOrdIdl, RngFunOrdElt, RngFunOrdElt -> RngFunOrdElt
- ChineseRemainderTheorem(I, J, a, b) : RngInt, RngInt, RngIntElt, RngIntElt -> RngIntElt
- ChineseRemainderTheorem(I1, I2, e1, e2) : RngOrdIdl, RngOrdIdl, RngOrdElt, RngOrdElt -> RngOrdElt
- ChineseRemainderTheorem(S, Z, V): [PlcFunElt], [FldFunGElt], [RngIntElt] -> FldFunElt
- ChineseRemainderTheorem(X, N) : [RngIntElt], [RngIntElt] -> RngIntElt
- ChineseRemainderTheorem(X, M) : [RngUPolElt], [RngUPolElt] -> RngUPolElt
- Cholesky
- Choy
- Chromatic
- ChromaticIndex
- ChromaticNumber
- ChromaticPolynomial
- cInvariants
- Circle
- circuit
V2.28, 13 July 2023