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Based on:

1 joint work with B. Fu and Y. Ruan, arXiv:2207.10533

2 in-progress work with W. He, X. Su, B. Wang, and X. Wen
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History

[Hitchin, 86] studied the space of special solutions of the self-dual
equations.

4d super Yang-Mills theory
reduction
⇝ Hitchin’s equations

FA − ϕ ∧ ϕ = 0

dAϕ = 0, dA ∗ ϕ = 0
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History

The solution space turns out to be the moduli space of stable
Higgs bundles

SLr − Higgss(C , d) = {(E , ϕ) | ϕ : E → E ⊗ KC} / ∼

It admits a hyperKähler structure. Furthermore

SLr − Higgss(C , d)
h−→ A

(E , ϕ) 7→ det(λ− ϕ)

the Hitchin map is projective which makes the moduli space a
completely integrable system.

Hitchin base: A =
r⊕

i=2

H0(C ,K i
C ).
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History

[Hausel-Thaddeus, 02] studied G − Higgss(C , d) for G = SLr (C)
and PGLr (C), which are Langlands dual.

PGLr − Higgss(C , d) = SLr − Higgss(C , d)/Γ,

here Γ = Pic0 C [r ]. The action is given as follows

L ∈ Pic0 C [r ], L · (E , ϕ) = (L⊗ E , ϕ).

In [Hausel-Thaddeus, 02], they proposed two kinds of mirror
symmetries:

SYZ mirror symmetry and Topological mirror symmetry
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SYZ Mirror Symmetry

[Hausel-Thaddeus, 02] SYZ:

SLr − Higgss(C , d)

h
''

PGLr − Higgss(C , d)

Lh
wwA

For generic a ∈ A,

h−1(a), Lh−1(a)

are special Lagrangian and dual abelian varieties.

HyperKähler structure ⇒ special Lagrangian

BNR correspondence ⇒ abelian variety of the Hitchin fiber
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Topological Mirror Symmetry

Stringy E-functional: Let M be a normal variety with only
canonical singularities. Consider a log resolution

ρ : Z −→ M,

i.e., the exceptional locus of ρ is a divisor whose irreducible
components D1, · · · ,Ds are smooth with only normal crossing.
And

KZ = ρ∗KM +
s∑

i=1

aiDi , ai ≥ 0.
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Topological Mirror Symmetry

For any subset J ⊆ I = {1, · · · , s}, let

DJ =
⋂
j∈J

Dj , D◦
J = DJ −

⋃
i∈I\J

Di .

Then the stringy E-functional of M is defined by

Est(M; u, v) =
∑
J⊆I

E (D◦
J ; u, v)

∏
j∈J

uv − 1

(uv)aj+1 − 1
,

where E (D◦
J ; u, v) is the Hodge-Deligne polynomial

E (D◦
J ; u, v) =

∑
p,q

∑
k≥0

(−1)khp,q(Hk
c (D

◦
J ;C))upvq.

It is well-known by [Batyrev, 97] that the stringy E-functional is
independent of the choice of the resolution.
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Topological Mirror Symmetry

[Hausel-Thaddeus, 02] TMS:

Est(SLr − Higgs) = Est(PGLr − Higgs), for r = 2, 3,

which is proved via C∗-localization computation.

For (r , d) = 1, i.e., semistable locus = stable locus ⇒ SLr − Higgs
is smooth.

[Groechenig-Wyss-Ziegler, 17] via p-adic integration.

[Maulik-Shen, 20] via support theorem and vanishing cycle
techniques.
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Motivation: Geometric Langlands and surface operator

[Kapustin-Witten, 06] initiated a program to study Langlands
program via 4d gauge theory and S-duality. [Gukov-Witten, 06]
([Gukov-Witten, 08]) introduced (rigid) surface operators in gauge
theory.

Roughly speaking, after dimension reduction

FA − ϕ ∧ ϕ = 0
dAϕ = 0, dA ∗ ϕ = 0
with singularities

step 1
⇝

da
s = [b, c]

db
s = [c , a]

dc
s = [a, b]

step 2
⇝ Coadjoint orbit

Nahm’s equations were first used by [Kronheimer, 89] to construct
the hyperKähler structure on coadjoint orbits of a certain type. It
was generalized to any type by [Kovalev, 94].
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Parabolic Higgs bundle

Hitchin’s equations with singularities were first studied by
[Simpson, 90]. For type A, fix a point x ∈ C , and filtration of
bundle F •(Ex) at x , i.e.,

F •(Ex) : Ex = E0 ⊃ E1 ⊃ · · · ⊃ Ed−1 ⊃ Ed = 0

PHiggs(C , r , d ,F •(Ex)) =

{
(E , ϕ) | ϕ : E → E ⊗ KC (x)

Resx ϕ preserves F •(Ex)

}
/

Weakly preserve: Resx(ϕ)(Ei ) ⊂ Ei ,

Strongly preserve: Resx(ϕ)(Ei ) ⊂ Ei+1.
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SYZ and TMS for type A

SYZ: [Su-Wang-X.Wen, 19] via parabolic BNR correspondence.

TMS: [Su-Wang-X.Wen, 22] via p-adic integration.

Remark

In type A, there is a one-to-one correspondence between classes of
filtrations and nilpotent orbits.
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SYZ and TMS for type B and C

Goal: SYZ and TMS for parabolic Higgs bundles of type B and C

Question: What’s the mirror input data?

Parabolic Higgs bundle “=” Higgs bundle + parabolic structure
(parabolic structure “=” nilpotent orbit closure)

Question: What’s the mirror nilpotent orbits?

Expectations:

1 The mirror pair should share the same dimension.

2 The mirror pair should share the same stringy E-functional.
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Local mirror symmetry for nilpotent orbit closure

Let G be a complex semisimple Lie group of classical type, and g
be its Lie algebra. Let X ∈ g be a nilpotent element, denote by

OX = G · X .

Nilpotent orbits are classified by a certain type of partitions:

Type An: d is a partition of n + 1, E.g. n=10, sl11,
d = [6, 3, 2],

Type Bn: d is a partition of 2n + 1, such that even parts
appear even times. E.g. n = 4, so9, d = [5, 2, 2],

Type Cn: d is a partition of 2n, such that odd parts appear
even times. E.g. n = 4, sp8, d = [3, 3, 2].

It is known that [Borel, Harish-Chandra] OX is closed if and only if
X is semisimple. Then nilpotent orbit is not closed in g.
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Nilpotent orbits

We say d = [d1, d2, · · · ] ≥ f = [f1, f2, · · · ] if
∑k

i=1 di ≥
∑k

i=1 fi for
any k ≥ 1. Then

Od =
⊔
f≤d

Of .

The closure O is not smooth(in general non-normal), has
symplectic singularities.

Yaoxiong Wen (KIAS) Mirror symmetry for parabolic Higgs bundles, from Local to Global



References

Nilpotent orbits

We say d = [d1, d2, · · · ] ≥ f = [f1, f2, · · · ] if
∑k

i=1 di ≥
∑k

i=1 fi for
any k ≥ 1. Then

Od =
⊔
f≤d

Of .

The closure O is not smooth(in general non-normal), has
symplectic singularities.

Yaoxiong Wen (KIAS) Mirror symmetry for parabolic Higgs bundles, from Local to Global



References

Nilpotent orbits

We say d = [d1, d2, · · · ] ≥ f = [f1, f2, · · · ] if
∑k

i=1 di ≥
∑k

i=1 fi for
any k ≥ 1. Then

Od =
⊔
f≤d

Of .

The closure O is not smooth(in general non-normal), has
symplectic singularities.

Yaoxiong Wen (KIAS) Mirror symmetry for parabolic Higgs bundles, from Local to Global



References

Nilpotent orbits

We say d = [d1, d2, · · · ] ≥ f = [f1, f2, · · · ] if
∑k

i=1 di ≥
∑k

i=1 fi for
any k ≥ 1. Then

Od =
⊔
f≤d

Of .

The closure O is not smooth(in general non-normal), has
symplectic singularities.

Yaoxiong Wen (KIAS) Mirror symmetry for parabolic Higgs bundles, from Local to Global



References

so7 :

[7]

[5, 12]

[32, 1]

[3, 22]

[3, 14]

[22, 13]

[17]
sp6 :

[6]

[4, 2]

[4, 12] [32]

[23]

[22, 12]

[2, 14]

[16]
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Special nilpotent orbits

If the transpose of the partition d, denote by dt, is still the same
type. We call the associate nilpotent orbit Od special.

For examples:

d = [22, 12]

⇝

dt = [4, 2] is still of type C. Thus [22, 12] is special.

d = [2, 14]. dt = [5, 1] is not of type C. Then [2, 14] is not
special.
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Special nilpotent orbits

Denote by N sp the set of special orbits. Then Springer theorem
gives a one-to-one correspondence of special orbits in Lie algebra
of type Bn and Cn:

S : N sp −→ LN sp

O 7→ SO.

It is an order-preserving and dimension-preserving map
[Spaltenstein, 82].

so7:

[3, 14], dim=10

[22, 13], dim=8

[17], dim=0
sp6:

[22, 12], dim=10

[2, 14], dim=6

[16], dim=0
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Mirror pairs of nilpotent orbits

Expectations:

1 The mirror pair should share the same dimension.

This holds
for special nilpotent orbits

2 The mirror pair should share the same stringy E-functional.
Will Springer dual nilpotent orbit closures have the same
stringy E-functional?

Answer: This naive thought fails!

Counterexample:

Est(O[3,14]) ̸= Est(O[22,12]),

where O[3,14] is Springer dual to O[22,12].

Question: How to remedy the failure?
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Est(O[3,14]) ̸= Est(O[22,12]),

where O[3,14] is Springer dual to O[22,12].

Question: How to remedy the failure?
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Richardson orbits

We say a nilpotent orbit O is Richardson if there exists a parabolic
subgroup P < G such that

µP : T ∗(G/P)↠ O.

We call P a polarization of O and Pol(O) the set of classes of all
polarizations of the orbit.

The Springer map µP is generically finite. If deg(µP) = 1, then it
is crepant. Conversely, if O admits a crepant resolution, i.e.,

ρ : Z → O.

Then O is Richardson and Z ∼= T ∗(G/P) for some P < G (by [Fu,
03]).
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Failure of the naive thought

O[3,14] and O[22,12] are Richardson:

T ∗(G/P)

1:1

��

Langlands dual
⇝ T ∗(LG/LP)

2:1

��
O[3,14]

Springer dual
⇝ O[22,12]

.

Est(O[3,14]) = E (T ∗(G/P)) = E (G/P)q5, q = uv

= q5(1 + q + q2 + q3 + q4 + q5)

Est(O[22,12]) =
(q4 − 1)(q5 − 1)(q6 − 1)q3

(q2 − 1)(q3 − 1)(q3 − 1)
.
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Seesaw phenomenon

However, by a little computation, one finds that

E (T ∗(LG/LP)) = E (T ∗(G/P)) = Est(O[3,14])

T ∗(G/P)

1:1
��

T ∗(LG/LP)
mirror pairoo

2:1
��

mirror pair

uu
O[3,14] Not the mirror pair

_? O[22,12]

.

A way to remedy the failure: consider certain cover of the
nilpotent orbit closure!
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Seesaw phenomenon

Let P < G be a parabolic subgroup with Lie algebra p = l⊕ u and
LP < LG the Langlands dual parabolic subgroup with Lie algebra
Lp = Ll⊕ Lu.

Theorem ([Fu-Ruan-Wen, 22])

T ∗(G/P)

µP

��

Langlands dual
⇝ T ∗(LG/LP)

µLP

��

O
Springer dual
⇝ SO

.

Moreover, we have the following seesaw property for the degrees:

degµP · degµLP = |Ā(O)| = |Ā(SO)|.
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Mirror symmetry for Richardson orbits

Taking Stein factorization, we have

T ∗(G/P)

πP

{{
µP

��

Langlands dual
⇝ T ∗(LG/LP)

πLP

%%
µLP

��

XP

νP
$$

XLP

νLPyy
Õ

Springer dual
⇝ S̃O

where πP (resp. πLP) is birational, and νP (resp. νLP) is a finite

map. We call XP (resp. XLP) the parabolic cover of Õ (resp. S̃O)
associated with P (resp. LP), which is normal with only canonical
singularities. As T ∗(G/P) (resp. T ∗(LG/LP)) has trivial canonical
bundle, the birational map πP (resp. πLP) is a crepant resolution.
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Mirror symmetry for Richardson orbits

Proposition (Topological mirror symmetry,[Fu-Ruan-Wen, 22])

For any polarization P of a Richardson orbit O, the two Springer
dual parabolic covers XP and XLP share the same stringy
E-polynomial.

Proposition ([Fu-Ruan-Wen, 22])

Given a Springer dual pair (O, SO) of Richardson orbits, we have

{(degµP , degµLP)|P ∈ Pol(O)}
={(2β, 2α+m), (2β+1, 2α+m−1), · · · , (2β+m, 2α)}.

We call the set {(degµP , degµLP)} the footprint.
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Asymmetry for the footprint

Consider [3, 14] ∈ so7 and [22, 12] ∈ sp6. Ā(O) = Z2.

Mirror Pair [3, 14] [22, 12]

All Polarizations P LP

Degree of Springer map 1 2

The footprint is (1, 2) which is NOT symmetric.

Question: What happens if we go beyond the range of the
footprint?
How about (2, 1)?
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Asymmetry for the footprint

Since π1(O[3,14]) = Ā(O[3,14]) = Z2. Let M be the double cover of

O[3,14], then

T ∗(G/P)

1:1
��

T ∗(LG/LP)

2:1
��

mirror pair

uu
O[3,14] O[22,12]

mirror pair?
uu

M

2:1

OO

Answer: Not the mirror pair!
In the following, for simplicity, we denote O[3,14] and O[22,12] by
OB and OC respectively.
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Asymmetry for the footprint

Questions: 1. What is the M?

Proposition ([Fu-Ruan-Wen, 22])

Consider the following nilpotent orbit

OD := O[22,14] ⊂ so8.

Then there exists an SO7–equivariant double cover OD → OB .

2. How to compute Est(OD) and Est(OC )? Are they the same?
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Log resolution of orbit closures

There are so-called Jacobson-Morosov resolutions for OC and OD :

GC ×PC
nC −→ OC , GD ×PD

nD −→ OD .

Proposition ([Fu-Ruan-Wen, 22])

Under the action of PC (resp. PD), nC (resp. nD) becomes an
SL2r–module. Moreover, there exist two vector spaces
VC ≃ VD ≃ C2r such that (in previous example r = 1)

nC = Sym2VC nD = ∧2VD .

The Jacobson-Morosov resolution is generally not a log resolution,
but we will construct a log resolution from it by successive blowups.
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Log resolution of type C

Let Mk ⊂ Sym2VC be the set of elements of rank k,
k = 0, 1, 2.

GC ×PC
Mk −→ OC

k := O[2k ,16−2k ] ⊂ OC =
⊔2

i=0O
C
i .

Consider the following birational map

ϕ : n̂C → nC = Sym2VC

obtained by successive blowups of nC = Sym2VC along strict
transforms of M i from smallest M0 to the biggest M2r−2.

Finally, we have the following log resolution

Φ : ẐC := GC ×PC
n̂C → ZC := GC ×PC

nC → OC .
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Log resolution of type C

Est(M; u, v) =
∑
J⊆I

E (D◦
J ; u, v)

∏
j∈J

uv − 1

(uv)aj+1 − 1
,

Let us denote by DC
i the exceptional divisor of Φ over O

C
i for

i = 0, · · · , 2r − 1.

Proposition ([Fu-Ruan-Wen, 22])

The morphism Φ is a log resolution for O
C
r ,l , and we have

K
ẐC

= 2lDC
2r−1 +

2r−2∑
j=0

(
(2r − j)(2r + 1− j)

2
− 1

)
DC

j .

In the previous example, r = l = 1.
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compare Est(OD) and Est(OC )

In our previous example

OB = O[3,14] ⊂ so7, OC = O[22,12] ⊂ sp6,

OD = O[22,14] ⊂ so8.

Proposition ([Fu-Ruan-Wen, 22])

Est(OD) =
(q2 + 1)(q4 − 1)(q6 − 1)q5

(q2 − 1)(q5 − 1)
.

Est(OC ) =
(q4 − 1)(q5 − 1)(q6 − 1)q3

(q2 − 1)(q3 − 1)(q3 − 1)
.
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Global Mirror Symmetry

Firstly, we need to construct a moduli space associated with the
Jacobson-Morozov resolution of the nilpotent orbit closure, i.e.,

G ×P n2 −→ O.

We denote the new moduli space by JMH(C ,O, d).

JMH(C ,O, d)
h−→ PA,

Here PA =
⊕n

i=2H
0(C ,K 2i

C ((2i − δi )x)), here {δi} is called the
singularity of the spectral curve.
The Hitchin maps may NOT be surjective in general. If the orbit
O is special, then Hitchin map is surjective and proper.
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Here the δi ’s are defined as follows. Consider a Richardson orbit of
type C

O[5,5,4,2] ⊂ sp16.

1 1 1 1 1
2 2 2 2 2
3 3 3 3
4 4 ⇝

1 ∗ 1 ∗ 1
∗ 2 ∗ 2 ∗
3 ∗ 3 ∗
4 ∗

i.e., δ1 = 1, δ2 = 1, δ3 = 2, δ4 = 2, δ5 = 2, δ6 = 3, δ7 = 3, δ8 = 4.
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Let’s consider the Springer dual Richardson orbit of type B:

O[5,5,5,1,1] ⊂ so17.

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4
5 ⇝

1 ∗ 1 ∗ 1
∗ 2 ∗ 2 ∗
3 ∗ 3 ∗ 3
∗
5

i.e., δ1 = 1, δ2 = 1, δ3 = 2, δ4 = 2, δ5 = 2, δ6 = 3, δ7 = 3, δ8 = 4.
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Global Mirror Symmetry

Theorem ([He-Su-Wang-X.Wen-Y.Wen, in preparation])

For two nilpotent orbits OB in type B and OC in type C. Then OB

and OC are both special and correspondenced by Springer dual if
and only if the following two conditions holds:

1 dim JMH(C ,OB , d) = dim JMH(C ,OC , d),

2 δi (OB) = δi (OC ).

JMH(C ,OB , d)

h &&

JMH(C ,OC , d)

Lhxx
PA

However, the generic Hitchin fibers h−1(a) and Lh−1(a) are NOT
dual abelian varieties!
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and only if the following two conditions holds:

1 dim JMH(C ,OB , d) = dim JMH(C ,OC , d),

2 δi (OB) = δi (OC ).

JMH(C ,OB , d)

h &&

JMH(C ,OC , d)

Lhxx
PA

However, the generic Hitchin fibers h−1(a) and Lh−1(a) are NOT
dual abelian varieties!
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SYM for Richardson cases

To remedy this problem, in Richardson cases, we consider

PHiggs(C ,P, d)

h

&&

µP

��

PHiggs(C , LP, d)

µLP

��

Lh

xx
JMH(C ,OB , d) // PA JMH(C ,OC , d)oo

The maps µp and µLP between generic fibers are FINITE!

deg(µP) · deg(µLP) = |Ā(O)|.

Theorem ([He-Su-Wang-X.Wen-Y.Wen, in preparation])

For a generic point a ∈ PA, the generic Hitchin fibers h−1(a) and
Lh−1(a) are dual abelian varieties.
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TMS for Richardson cases

Theorem ([He-Su-Wang-X.Wen-Y.Wen, in preparation])

Two moduli spaces PHiggs(C ,P, d) and PHiggs(C , LP, d) with
dual input data share the same stringy E-functional.

Via p-adic integration.
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Thank you!
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