## Seshadri constants on toric surfaces

### Luca Ugaglia

Università degli Studi di Palermo

13th October 2022

Joint work with A. Laface

## Definition

Let X be a projective surface, H a nef line bundle.

• The **Seshadri constant** of H at a smooth point  $x \in X$  is

$$\varepsilon(X, H, x) := \inf \left\{ \frac{H \cdot C}{\operatorname{mult}_x(C)} \right\}$$

• The multiple Seshadri constant of H at general  $x_1, \ldots, x_n \in X$  is

$$\varepsilon(X, H, n) := \inf \left\{ \frac{H \cdot C}{\sum_i \operatorname{mult}_{x_i}(C)} \right\}$$

## Seshadri Constants

## Proposition

If  $\pi \colon \tilde{X} \to X$  is the blowing up at x and E exceptional divisor, then

$$\varepsilon(X, H, x) = \sup\{t \mid \pi^*H - tE \text{ is nef}\}.$$

## Corollary

 $\begin{array}{l} H \ \mbox{nef,} \ x \in X \ \mbox{smooth point.} \\ \bullet \ \ \varepsilon(X,H,x) \leq \sqrt{H^2}. \\ \bullet \ \ \varepsilon(X,H,n) \leq \sqrt{\frac{H^2}{n}}. \end{array}$ 

 ${\rm Proof.} \ \pi^*H - \varepsilon E \ {\rm nef} \ \Rightarrow \ (\pi^*H - \varepsilon E)^2 \geq 0 \ \Rightarrow \ H^2 - \varepsilon^2 \geq 0$ 

## Remark

- If  $\varepsilon < \sqrt{H^2} \Rightarrow \exists C$  submaximal such that  $\varepsilon = \frac{H \cdot C}{\text{mult}_r C} \in \mathbb{Q}$ .
- No irrational Seshadri are known.
- Knowing  $Nef(\tilde{X})$  we can compute the Seshadri constant.

Example. If 
$$X := \mathbb{P}^2$$
,  $H = \mathcal{O}(1)$ .  
• Eff $(\tilde{X}) = \langle \pi^* H - E, E \rangle \Rightarrow \operatorname{Nef}(\tilde{X}) = \langle \pi^* H - E, \pi^* H \rangle$ .  
•  $\varepsilon(\mathbb{P}^2, H, x) = 1 = \sqrt{H^2}$ .



Example. If  $X := \mathbb{P}^2$ ,  $\tilde{X} = \operatorname{Bl}_n(\mathbb{P}^2)$ ,  $H = \mathcal{O}(1)$ .

- If  $n \leq 8$ ,  $\operatorname{Eff}(\tilde{X})$  polyhedral, known  $\Rightarrow \operatorname{Nef}(\tilde{X})$  known.
- $\varepsilon(\mathbb{P}^2, H, n) = 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{2}{5}, \frac{2}{5}, \frac{3}{8}, \frac{6}{17}, \text{ for } n = 1, \dots, 8.$
- Case n = 2:



Nagata Conjecture

## Conjecture (Nagata)

For any 
$$n \ge 9 \Rightarrow \varepsilon(\mathbb{P}^2, \mathcal{O}(1), n) = \frac{1}{\sqrt{n}}$$
.

## Remark

True if  $n = k^2$ , with  $k \in \mathbb{N}$ .

- Fix C with  $\deg(C) = k$  and  $p_1, \ldots, p_{k^2} \in C$ .
- $\tilde{C} = \pi^* k H \sum E_i$  is nef on the blowing up of  $\mathbb{P}^2$  at the  $p_i$ .
- By semicontinuity it is also nef on the blowing up at  $k^2$  general points.

• 
$$\pi^*H - \frac{1}{k}\sum E_i$$
 nef  $\Rightarrow \ \epsilon \geq \frac{1}{k}$ 

Example. If  $X := \mathbb{P}(a, b, c)$ ,  $\pi \colon \tilde{X} \to X$  blow-up at a general point  $e \in X$ .

• 
$$\operatorname{Cl}(X) = \langle H \rangle$$
, with  $H^2 = \frac{1}{abc} \Rightarrow \operatorname{Cl}(\tilde{X}) = \langle \pi^* H, E \rangle$ .

- In general  $\operatorname{Eff}(\tilde{X})$  is unknown.
- Positive light cone Q with rays  $R_{\pm} = \pi^* H \pm \frac{1}{\sqrt{abc}} E$ .
- By Riemann-Roch  $\operatorname{Eff}(\tilde{X}) \supseteq Q$ .

There are two possibilities.

(i) Eff $(\tilde{X})$  bounded by the  $\mathbb{R}$ -divisor  $R_{-} \Leftrightarrow \varepsilon = \frac{1}{\sqrt{abc}}$ . (ii) Eff $(\tilde{X})$  bounded by a negative class  $C \Leftrightarrow \varepsilon < \frac{1}{\sqrt{abc}}$ .



### Remark

- For many gradings (a, b, c) it is known the existence of the negative curve C bounding the effective cone (e.g. [GK-16] and [Hau&al-18]).
- It is conjectured that for some gradings, i.e. (9, 10, 13), there does not exist the negative curve.

## Remark ([CK-11])

If  $\varepsilon(\mathbb{P}(a, b, c), H, e) \notin \mathbb{Q}$ , then Nagata Conjecture holds for n = abc.

Proof.

- $f \colon \mathbb{P}^2 \to \mathbb{P}(a, b, c)$  defined by  $(x, y, z) \mapsto (x^a, y^b, z^c)$ .
- $\tilde{Y} =$  blowing-up of  $\mathbb{P}^2$  at the n := abc points of  $f^{-1}(e)$ .
- $R_-$  is nef  $\Rightarrow f^*R_- = L \frac{1}{\sqrt{n}} \sum_{i=1}^n E_i$  is nef on  $\tilde{Y}$ .
- By semicontinuity it is nef on the blowing-up in *n* general points.

## Definition

•  $\Delta \subseteq \mathbb{Q}^2$  lattice polygon,  $N:=|\Delta \cap \mathbb{Z}^2|,$ 

$$\begin{array}{rcl} \varphi \colon (\mathbb{C}^*)^2 & \to & \mathbb{P}^{N-1} \\ (s,t) & \mapsto & (s^a t^b : (a,b) \in \Delta \cap \mathbb{Z}^2). \end{array}$$

X<sub>Δ</sub> := φ((ℂ\*)<sup>2</sup>) ⊆ ℙ<sup>N-1</sup> projective toric surface associated to Δ.
Δ ∩ ℤ<sup>2</sup> ⇔ sections of ℒ<sub>Δ</sub> := |H<sub>Δ</sub>|, H<sub>Δ</sub> ample.
The image of (1,1) is the general point e ∈ φ((ℂ\*)<sup>2</sup>) ⊆ X<sub>Δ</sub>.
m ∈ ℤ<sub>>0</sub> ⇒ ℒ<sub>Δ</sub>(m) := {C ∈ ℒ<sub>Δ</sub> | mult<sub>e</sub>(C) ≥ m} ⊂ ℒ<sub>Δ</sub>.



## Example

• The triangle  $\Delta$  gives  $X_{\Delta} = \mathbb{P}(9, 10, 13), \ H_{\Delta} = 9 \cdot 10 \cdot 13 \cdot H$ 



Lattice width

## Definition

- $\Delta \subseteq \mathbb{Q}^2 \text{ lattice polygon, } v \in \mathbb{Z}^2.$ 
  - $\bullet$  Lattice width of  $\Delta$  with respect to v

$$\operatorname{lw}_{v}(\Delta) := \max_{w \in \Delta} \{ v \cdot w \} - \min_{w \in \Delta} \{ v \cdot w \}.$$

• Lattice width of  $\Delta$ 

$$\operatorname{lw}(\Delta) := \min_{v \in \mathbb{Z}^2} \{ \operatorname{lw}_v(\Delta) \}.$$

# Seshadri on toric surfaces

Lattice width

## Example.



• 
$$\operatorname{lw}_{(1,0)}(\Delta) = 3$$
,  $\operatorname{lw}_{(1,1)}(\Delta) = 2 = \operatorname{lw}(\Delta)$ .

#### Remark

## x ∈ X<sub>Δ</sub> fixed point or a point on a fixed curve Nef(X̃) ⇒ Seshadri constant ([Bau&al-09], [Ito-14]).

•  $e \in X_{\Delta}$  general point  $\Rightarrow$  upper bound  $\varepsilon \leq lw(\Delta)$ , lower bound ([lto-14]).

Example.



 $\varepsilon(X_{\Delta}, H_{\Delta}, e) \ge \min\{2, 3/2\}.$ 

# Proposition ([LU-21])

 $\Delta \subseteq \mathbb{Q}^2$  lattice polygon, (X, H) toric pair,  $\varepsilon := \varepsilon(X, H, e)$ . Then:

- $If \operatorname{Vol}(\Delta) > \operatorname{lw}(\Delta)^2 \ \Rightarrow \ \varepsilon \in \mathbb{Q}.$
- **2** If  $\exists m \in \mathbb{N}$  such that  $\mathcal{L}_{\Delta}(m) \neq \emptyset$  and  $\operatorname{Vol}(\Delta) \leq m^2$ , then:
  - $\varepsilon \in \mathbb{Q}$ ;
  - $\varepsilon \leq \operatorname{Vol}(\Delta)/m$ ;
  - if  $\mathcal{L}_{\Delta}(m)$  contains an irreducible curve, then  $\varepsilon = \operatorname{Vol}(\Delta)/m$ .

### Proof.

$$\begin{array}{rcl} (\pi^*H - \varepsilon E) \cdot C & \geq & 0 \\ (\pi^*H - mE + (m - \varepsilon)E) \cdot C & \geq & 0 \\ C^2 + (m - \varepsilon)E \cdot C & \geq & 0 \\ C^2 + m^2 - \varepsilon m & \geq & 0 \end{array} \Rightarrow \quad \varepsilon \leq \frac{m^2 + C^2}{m}.$$

## Definition

 $f \in \mathbb{C}[u^{\pm 1}, v^{\pm 1}]$  irreducible,  $\Delta$  Newton polygon, m multiplicity at (1, 1). The strict transform  $C \subseteq \tilde{X}$  of the closure of  $V(f) \subseteq (\mathbb{C}^*)^2$  is the **intrinsic curve** defined by f, and it is:

- intrinsic negative (resp. non-positive) if  $C^2 < 0$  (resp.  $\leq 0$ );
- intrinsic (-n)-curve if  $C^2 = -n < 0$  and  $p_a(C) = 0$ ;
- expected if  $|\Delta \cap \mathbb{Z}^2| > \binom{m+1}{2}$ .

## Remark

In the above setting:

• 
$$\overline{V(f)} \in \mathcal{L}_{\Delta}(m) \Rightarrow C^2 = \operatorname{Vol}(\Delta) - m^2.$$

• 
$$p_a(C) = \frac{1}{2} \left( \operatorname{Vol}(\Delta) - m^2 + m - |\partial \Delta \cap \mathbb{Z}^2| \right) + 1.$$

• Intrinsic (-1)-curve

$$\operatorname{Vol}(\Delta) = m^2 - 1, \quad |\partial \Delta \cap \mathbb{Z}^2| = m + 1.$$

• C expected  $\Rightarrow$  we expect  $\mathcal{L}_{\Delta}(m) \neq \emptyset$ .

## Example

• 
$$f := u^2v + uv^2 - 3uv + 1$$
, irreducible with  $m = 2$ .

Newton polygon



- $\operatorname{Vol}(\Delta) = 3 = m^2 1$  and  $|\partial \Delta \cap \mathbb{Z}^2| = 3 = m + 1$ .
- f defines an intrinsic (-1)-curve.

## Proposition ([LU-21])

Non-equivalent polygons for intrinsic non-positive curves,  $m \leq 7$ .



# Intrinsic curves

Expected

## Proposition ([LU-21])

C intrinsic **expected** non-positive with Newton  $\Delta$  and multiplicity m. Then one of the following holds:

|            | $\operatorname{Vol}(\Delta)$ | $ \partial \Delta \cap \mathbb{Z}^2 $ | $C^2$ | $p_a(C)$ |
|------------|------------------------------|---------------------------------------|-------|----------|
| <i>i</i> ) | $m^2$                        | m                                     | 0     | 1        |
| ii)        | $m^2$                        | m+2                                   | 0     | 0        |
| iii)       | $m^2 - 1$                    | m + 1                                 | -1    | 0        |

## Corollary ([LU-21])

If C is an intrinsic non-positive curve corresponding to a pair  $(\Delta, m)$ , and  $\varepsilon := \varepsilon(X_{\Delta}, H_{\Delta}, e)$  is the Seshadri constant of the corresponding toric surface, then

$$\varepsilon = \frac{\operatorname{Vol}(\Delta)}{m}.$$

Example.

$$\Rightarrow \text{ Seshadri constant } \varepsilon = \frac{\text{Vol}(\Delta)}{m} = \frac{3}{2}$$

## Proposition ([LU-21] Infinite families of non-positive intrinsic curves)

|       | vertices of $\Delta$                                                                               | $\operatorname{lw}(\Delta)$ | $C^2$ | g(C) |
|-------|----------------------------------------------------------------------------------------------------|-----------------------------|-------|------|
| (i)   | $\left[\begin{smallmatrix} 0 & m & 1 \\ 0 & 1 & m \end{smallmatrix}\right]$                        | $m \ge 2$                   | -1    | 0    |
| (ii)  | $\begin{bmatrix} 0 & m-3 & m & m-1 & m-2 \\ 0 & 0 & 1 & m & m-1 \end{bmatrix}$                     | $m \ge 4$                   | -1    | 0    |
| (iii) | $\begin{bmatrix} 0 & 0 & 2 & m-4 & m-1 & m & m-1 \\ 0 & 1 & m & m & m-1 & m-2 & m-3 \end{bmatrix}$ | $m = 2k \ge 8$              | -2    | 0    |
| (iv)  | $\begin{bmatrix} 0 & m-2 & m & m-1 & m-2 \\ 0 & 0 & 1 & m & m-1 \end{bmatrix}$                     | $m \ge 4$                   | 0     | 0    |

- Proof. Given homogeneous  $f_1, \ldots, f_4 \in \mathbb{C}[s, t]_m$ :
  - **(**) it is possible to describe the Newton polygon of  $\overline{\psi(\mathbb{P}^1)}$  ([DS-10])

$$\psi \colon \mathbb{P}^1 \quad \dashrightarrow \quad (\mathbb{C}^*)^2$$
$$(s,t) \quad \mapsto \quad \left(\frac{f_1}{f_2}, \frac{f_3}{f_4}\right)$$

(2) if  $(f_1, f_2) = (f_3, f_4) = 1$  and  $f_1 + f_3 = f_2 + f_4$ , then  $\overline{\psi(\mathbb{P}^1)}$  has multiplicity at least m at (1, 1).

Example. Consider  $g := s^{m-1} + ts^{m-2} + \dots + t^{m-1}$  and

$$f_1 = -s^m, \quad f_2 = t \cdot g, \quad f_3 = t^m, \quad f_4 = -s \cdot g.$$

• The vanishing order of 
$$\psi = \left(rac{-s^m}{t \cdot g}, rac{-t^m}{s \cdot g}
ight)$$
 is  $(0,0)$  unless

$$\operatorname{ord}_{(0,1)} = (m, -1) \\
 \operatorname{ord}_{(1,0)} = (-1, m) \\
 \operatorname{ord}_{q_j} = (-1, -1)$$

where  $q_1, \ldots, q_{m-1}$  are the roots of g.

- The rays of the normal fan of  $\Delta$  are  $(m,-1),\,(-1,m),\,(-1,-1).$
- The integer lengths of the corresponding edges are given by the number of zeroes 1, 1, m 1.
- Then  $\Delta$  is



#### Remark

Let  $X := \mathbb{P}(9, 10, 13)$ ,  $\varepsilon := \varepsilon(X, H, e)$ .

•  $\varepsilon = 1/\sqrt{9 \cdot 10 \cdot 13} \iff d_n \pi^* H - m_n E$ , s.t.  $d_n/m_n \to \sqrt{9 \cdot 10 \cdot 13}$ .

• It is possible to compute a minimal generating set of the Cox ring of  $\tilde{X}$ , consisting of homogeneous elements of given bounded multiplicity at e (see [Hau&al-16]).

- For  $m \leq 30$ , we found the following 52 generators.
- There are many intrinsic (-1)-curves which are positive in  $\tilde{X}$ .

| m | $C^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $p_a$                                                 | d                                                                                                                                                                                                                                                                                                                                         | m                                                      | $C^2$                                                 | $p_a$                                                  |                                                        | d                                                       | m                                                      | $C^2$                                                  | $p_a$                                                  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 1 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                     | 313                                                                                                                                                                                                                                                                                                                                       | 9                                                      | -1                                                    | 0                                                      |                                                        | 721                                                     | 21                                                     | -1                                                     | 0                                                      |
| 1 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                     | 378                                                                                                                                                                                                                                                                                                                                       | 11                                                     | -1                                                    | 0                                                      |                                                        | 755                                                     | 22                                                     | -1                                                     | 0                                                      |
| 1 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                     | 379                                                                                                                                                                                                                                                                                                                                       | 11                                                     | -1                                                    | 0                                                      |                                                        | 789                                                     | 23                                                     | 0                                                      | 1                                                      |
| 2 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 380                                                                                                                                                                                                                                                                                                                                       | 11                                                     | -1                                                    | 0                                                      |                                                        | 790                                                     | 23 1                                                   |                                                        | 2                                                      |
| 3 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 413                                                                                                                                                                                                                                                                                                                                       | 12                                                     | -1                                                    | 0                                                      |                                                        | 823                                                     | 24                                                     | -1                                                     | 0                                                      |
| 3 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 481                                                                                                                                                                                                                                                                                                                                       | 14                                                     | -1                                                    | 0                                                      |                                                        | 824                                                     | 24                                                     | -1                                                     | 0                                                      |
| 3 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 482                                                                                                                                                                                                                                                                                                                                       | 14                                                     | -1                                                    | 0                                                      |                                                        | 858                                                     | 25                                                     | -1                                                     | 0                                                      |
| 4 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 483                                                                                                                                                                                                                                                                                                                                       | 14                                                     | -1                                                    | 0                                                      |                                                        | 891                                                     | 26                                                     | -1                                                     | 0                                                      |
| 4 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 516                                                                                                                                                                                                                                                                                                                                       | 15                                                     | 0                                                     | 1                                                      |                                                        | 892                                                     | 26                                                     | -1                                                     | 0                                                      |
| 4 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 549                                                                                                                                                                                                                                                                                                                                       | 16                                                     | -1                                                    | 0                                                      |                                                        | 893                                                     | 26                                                     | 0                                                      | 1                                                      |
| 6 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 550                                                                                                                                                                                                                                                                                                                                       | 16                                                     | -1                                                    | 0                                                      |                                                        | 893                                                     | 26                                                     | 3                                                      | 3                                                      |
| 6 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 551                                                                                                                                                                                                                                                                                                                                       | 16                                                     | -1                                                    | 0                                                      |                                                        | 926                                                     | 27                                                     | -1                                                     | 0                                                      |
| 6 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 585                                                                                                                                                                                                                                                                                                                                       | 17                                                     | -1                                                    | 0                                                      |                                                        | 959                                                     | 28                                                     | 0                                                      | 1                                                      |
| 6 | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 652                                                                                                                                                                                                                                                                                                                                       | 19                                                     | -1                                                    | 0                                                      |                                                        | 960                                                     | 28                                                     | 0                                                      | 1                                                      |
| 7 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                     | 653                                                                                                                                                                                                                                                                                                                                       | 19                                                     | -1                                                    | 0                                                      |                                                        | 994                                                     | 29                                                     | -1                                                     | 0                                                      |
| 9 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 686                                                                                                                                                                                                                                                                                                                                       | 20                                                     | 0                                                     | 1                                                      | 1                                                      | 028                                                     | 30                                                     | 0                                                      | 1                                                      |
| 9 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     | 720                                                                                                                                                                                                                                                                                                                                       | 21                                                     | 1                                                     | 2                                                      | 1                                                      | 029                                                     | 30                                                     | -1                                                     | 0                                                      |
| 9 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                     |                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                       |                                                        |                                                        |                                                         |                                                        |                                                        |                                                        |
|   | $     \begin{array}{c}       m \\       1 \\       1 \\       2 \\       3 \\       3 \\       3 \\       4 \\       4 \\       6 \\       6 \\       6 \\       7 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       2 \\       3 \\       3 \\       3 \\       4 \\       4 \\       6 \\       6 \\       6 \\       7 \\       7 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\     $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccc} \hline m & C^2 & p_a \\ \hline 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & -1 & 0 \\ 3 & -1 & 0 \\ 3 & -1 & 0 \\ 3 & -1 & 0 \\ 4 & -1 & 0 \\ 4 & -1 & 0 \\ 4 & -1 & 0 \\ 4 & -1 & 0 \\ 6 & -1 & 0 \\ 6 & -1 & 0 \\ 6 & -1 & 0 \\ 6 & -2 & 0 \\ 7 & 0 & 1 \\ 9 & -1 & 0 \\ 9 & -1 & 0 \\ 9 & -1 & 0 \\ \end{array}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

### Remark

Best approximation of  $\sqrt{9 \cdot 10 \cdot 13} = 34.20526...$  given by an intrinsic (-1)-curve, 891/26 = 34.26923...



### Question

Is it possible to construct an infinite family of intrinsic (-1)-curves appearing as positive curves in  $\tilde{X}$ , and whose slopes approach  $\sqrt{9 \cdot 10 \cdot 13}$ ?

# Bibliography

```
T. Bauer, S. Di Rocco, B. Harbourne, M. Kaputska, A. Knutsen,
   W. Syzdek, T. Szemberg
   A primer on Seshadri constants
   Interactions of classical and numerical alg. geometry
   Contemp. Math., 496, Amer. Math. Soc., Providence, (2009), 33-70.
   A. Ito
   Seshadri constants via toric degenerations
   J. Reine Angew. Math. 695, (2014), 151-174.
C. D'Andrea, M. Sombra
```

The Newton polygon of a rational plane curve Math. Comput. Sci. **1**, (2010), 3–24.

J. L. González, K. Karu,
 Some non-finitely generated Cox rings
 J Compos. Math. 152, (2016), 984–996.

# Bibliography

- J. Hausen, S. Keicher, A. Laface Computing Cox rings Math. Comp. **85**, (2016), 467–502.
- J. Hausen, S. Keicher, A. Laface On blowing up the weighted projective plane Math. Z. **290**, (2018), 1339–1358.
- 🔋 S. D. Cutkosky, K. Kurano

Asymptotic regularity of powers of ideals of points in a weighted projective plane Kyoto J. Math. **51**, (2011), 25–45.

A. Laface and L. Ugaglia On intrinsic negative curves arXiv:2102.09034