A relative Yau-Tian-Donaldson Conjecture and Stability Thresholds

University of Nottingham Algebraic Geometry Seminar 18/05/2023

Setting: X^m smooth Fano manifold, $Aut(x) = \{Id\}, weg(x)\}$ Kähler form

1 Introduction & Motivation

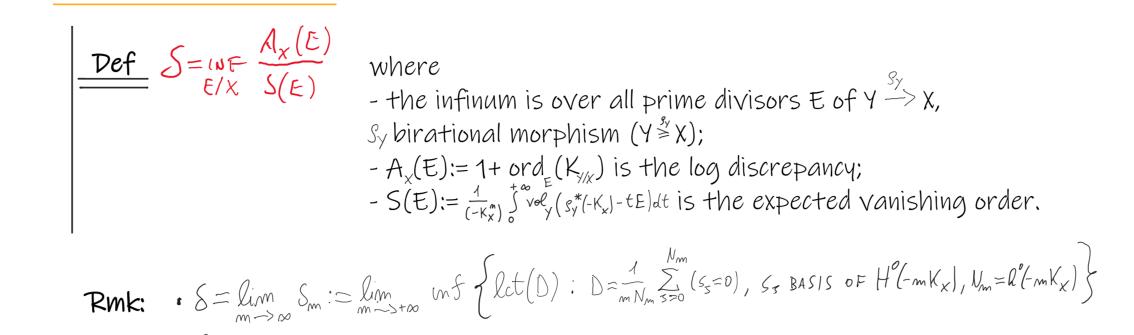
Theorem (Chen-Donaldson-Sun '15, Berman '16, Fujita-Odaka '18, Blum-Jonsson '21, Liu-Xu-Zhuand '22)

The followings are equivalent: i) X admits a Kähler-Einstein metric; ii) (X,- K_{χ}) is (uniformly) K-stable; iii) 8 > 1

It solves the famous Yau-Tian-Donaldson Conjecture on Fano manifolds and it produces a fascinating link between Differential and Algebraic Geometry

1.1 Delta-invariant

~



* S > 1 is an efficient criterion to detect K-stability (Abban-Zhuang '22).

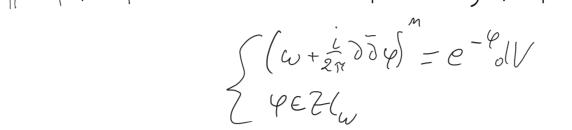
1.2 Kähler-Einstein metrics

Def A Kähler-Einstein metric is determined by a Kähler form $\omega \in c_1(x)$ such that

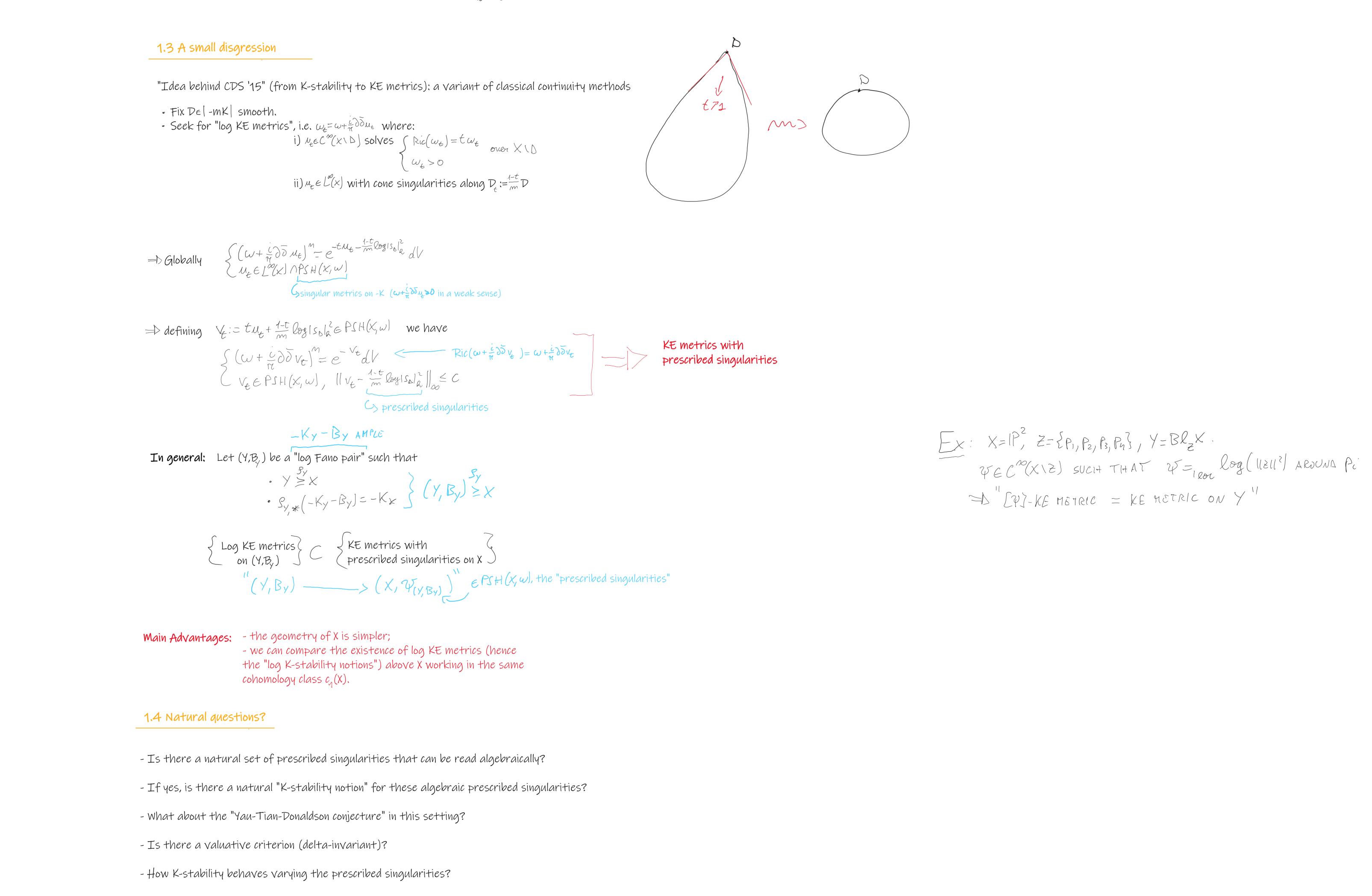
 $\operatorname{Ric}(\omega_{\mathrm{KE}}) = \omega_{\mathrm{KE}}$

• Locally $\operatorname{Ric}(\omega) = |_{loc} - \frac{i}{\pi} \operatorname{Jo} \log(\det g_{3k}) | F \omega = i \sum_{g_{3k}} dz_{s} dz_{k}$

 $\cdot \omega_{KE} \approx \omega + \frac{c}{\pi} \delta \delta \varphi$ for φ solution to the complex Monge-Ampère equation



where ∂U is a smooth volume form attached to (X, ω) , while $\mathcal{U}_{\omega} := \{u \in \mathcal{U}^{\infty}(X) : \omega + \frac{c}{n} \partial \overline{\partial} \mu \text{ is Kähler}\}$



2 D-log K-stability

From now on we assume L=-K $_{\chi}$

Recall: A (weil) b-divisor $D = \{ D_y \}_{y \ge x}$ is a family of \mathbb{R} -divisors such that $S_* = D_y$ if $Y' \ge Y$

RMK: - Let D be a divisor on X. Then $D_y := \hat{S_yD}$ is a b-divisor. - A b-divisor D is said to be "Cartier" if there exists $Y \ge X$ such that $D_{y'} = s^* D_y$ for any $Y' \stackrel{s}{\ge} Y$

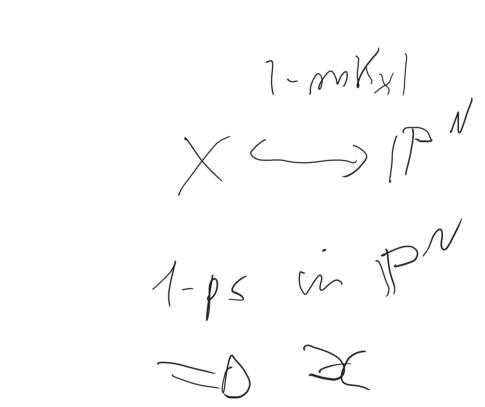
Def: We define $\operatorname{Div}(X)$ as the set of all generalised b-divisors (countable sum is allowed) such that

i) L-D is Nef;
ii) <(L-D)^m> := inf vol (
$$g_y^*$$
L-D_y) > D
 $y_{\geq \chi}$ y (y_y^* L-D_y) > D

Proposition: There exists a natural set of algebraic singularities $\mathcal{M} \in \mathsf{PSH}(X, \omega)$ such that Div (X) $\leftarrow 1$

2.1 Usual K-stability

Def: A test configuration $(\mathcal{X}, \mathcal{L})$ for $(\mathcal{X}, \mathcal{L})$ consists of i) a normal variety \mathfrak{X} ; ii) a flat and projective morphism $\pi: \mathfrak{F} \longrightarrow \mathfrak{C};$ iii) a ξ^* -action on Ξ lifting the canonical action on ξ^* ; iv) a ξ^* -linearized Q-line bundle Σ ; V) an isomorphism $(\Sigma_1, \Sigma_2) \simeq (X, L)$. • ¢*



s o t

X N F*

(X,L)

<u>Def:</u> (X,L) is uniformly K-stable if there exists A>O such that $DF(X,L) \ge A J(X,L)$ for any (X,L) ample test configuration where

The "Donaldson-Futaki" invariant is defined as $DF(\mathcal{X}, \mathcal{L}) := \frac{1}{(\mathcal{L}^m)} \left(K_{\mathcal{X}/\mathcal{IP}^1} \cdot \mathcal{J}^m \right) + \frac{1}{(\mathcal{L}^m)} \frac{(\mathcal{J}^m)}{(\mathcal{L}^m)} + \frac{1}{(\mathcal{L}^m)} + \frac{1}{(\mathcal{L}^$ where we considered the compactification $(\widetilde{\mathfrak{X}},\widetilde{\mathfrak{L}})$ over \mathbb{P}^1 .

The J-functional is a "measures" on the triviality of test configuration and it vanishes is and only if $\chi \simeq \chi \times c$

2.2 A Riemann-Zariski perspective p-codimensional classes We consider $X^{R^{2}} := \lim_{\Sigma \to \infty} \mathcal{X}, \mathcal{X} \stackrel{f^{*}}{\Rightarrow} X \times IP^{1}$. We then have $N^{P}(X^{P}) := \lim_{\Sigma \to \infty} N^{P}(\mathcal{X})$ p-codimensional weil classes and $CN^{P}(X^{R^{2}}) := \lim_{\Sigma \to \infty} N^{P}(\mathcal{X})$ p-codimensional Cartier classes.

i.e. well-defined "(ample) test configuration classes"

Æ $\frac{\text{Def:}}{\text{Let } D \in \text{Div}_{L}(X). \text{ We define } D \in \mathbb{N}^{1}(X^{**}) \text{ as the class of the following b-divisor.} \\ \text{Let } X \stackrel{\text{def}}{=} X \times \mathbb{I}^{4}, X \stackrel{\text{def}}{=} Y \times \mathbb{C}^{*} \text{ for } Y \ge X. \text{ If } P_{y} = \sum_{i=1}^{n} a_{F}, \text{ then } D_{X} \stackrel{\text{def}}{=} \sum_{i=1}^{n} a_{F}, \text{ where } \\ \int_{X} \text{ is the Zariski closure of } F_{X} \stackrel{\text{def}}{=} \text{ with respect to the open embedding } Y_{X} \stackrel{\text{def}}{=} X \times \mathbb{C}^{*} \xrightarrow{V} Y \times \mathbb{C}^{*} \xrightarrow{V} X \times \mathbb{C}^{*$

Main idea: The "positivity" to take under considerations to define "D-log K-stability" are encoded in the classes $\int -D \in N^{-1}(X^{R})$, where $\int V$ varies among all ample test configuration classes

Proposition/Definition: There exists a well-defined Donaldson-Futaki invariant ${}^{{}}$ test configuration classes ${}^{{}}$ — $\longrightarrow |\mathcal{R}|$ such that i) it coincides with the usual Donaldson-Futaki invariant when D=D; ii) it is given in terms of an intersection formula in $X^{R^{a}}$. "Asymptotic" log K-stability Moreover DF(L;D) = SUP INF DF(9, Lm, g) $Y' Y \geq Y' By (9, Lm, g)$ for $B_y = D_y - K_{y/x}$, $L_y := s_y^* L - D_y$, while $\int_{m_y} := s_y^* \int_{m_y} + m y_y - D_y$ w.r.t. $g = \frac{S_y}{S_y} = \chi$ $\forall x | P' \rightarrow X x | P$ Sy x Id

Def: (X,L) is said to be uniformly D-log K-stable if there exists A>O such that

 $DF(\mathcal{L}; D) \ge A J(\mathcal{E}; D)$ for any ample test configuration class \mathcal{L} . \longrightarrow It measures the "D-triviality".

3. Main Results

"Analytic" "Algebraic" Theorem Let L=- K_x , $D \in DiV_L(X)$ (i.e. $\psi_h \in \mathcal{H}^{A \cup G}$). \longrightarrow (X,L) is uniformly D-Log K-stable There exists $[\psi]$ -KE metric ____ The v_b -Ding functional is "coercive" <ightarrow (X,L) is uniformly D-log Ding-stable

δ_b>1 (- (5)

Main ideas of the proofs:

- 1<->2: It was part of my PhD thesis. The idea is to study (weak) solution to the associated complex Monge-Ampère equation thanks to a variational approach in pluripotential theory. A new "strong metric topology" plays a key role.
- 2->4: To any ample test configuration class we can associate a natural geodesic ray in the metric space of the previous point. Then a singular version of Deligne-Pairings allows us to connect the slope of the Ding functional to the "D-log Non-Archimedean Ding functional", which measures the D-log Ding-stability. Many difficulties coming from the singularities and from adapting pluripotential analysis to the Riemann-Zariski perspective.
- 4->3: Use the "log asymptotic" formula and known results/strategies in the literature.

C

 $(\mathscr{E}'(X,\omega,\mathcal{V}_{\mathcal{D}}),d_{\mathcal{I}})$ \sim lim $D(\varphi_{\vec{e}}) = D(\Sigma, D)$ $E^{-S \cdot i \cdot N} = E$ fr \cap Z

3.2 Stability thresholds _____

	For simplicity let assume that D is Cartier. Namely D=D _y is a divisor on $Y \stackrel{s}{\geq} X$ such that $L_y := \stackrel{*}{s} L - D_y$ is nef and big. Then (Y, B_y) is a (weak) log Fano pair, where $B_y := D_Y - K_{Y/X}$	ECZZY
	Then $S_{b} := iNF \xrightarrow{A_{\chi}(E) - ORO_{E}(D)}{S_{b}(E)} = iNF \xrightarrow{A_{(Y,BY)}(E)}{S_{b}(E)} = \frac{INF}{E/Y} \xrightarrow{A_{(Y,BY)}(E)}{S_{b}(E)}$	$S'(E) = \frac{1}{(L_{\gamma}^{m})} \int vol(S_{z}^{*}L_{\gamma} - CE)dt$
	$\widetilde{S}_{S} := INF \qquad \qquad$	
Main advantage of considering $\widetilde{\mathcal{S}}_{D}$:		
	We do not change cohomology class, and this allows us to better study analytically and algebraically the properties of the function $\text{Div}_{\mathcal{L}}(X) \ge D \longrightarrow \widehat{S}_{b}$.	
	Theorem	
	Let L= -K. Then i) (X,L) is uniformly K-stable if and only if $\sup_{D \in Div_{L}(x)} \left(\widetilde{S}_{D}^{*} < (L-D)^{*} \right) > (L^{*}) $	
	ii) is "strongly" continuous. In particular the D-log Ding stability is an open condition;	

iii) $S = S_0 \leq (L^m) INF$ DE Div_(x) < (L-D)^m>