Sasaki-Einstein metrics on spheres
(j.w. Yuchen Liv and Taro Suno)
\} Introduction
Standarol sphere: $S^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{1}^{2}+\ldots x_{n}^{2}=1\right\}$ manifold
Homotopy spheres a (real saooth) dift. manifold homotopy equirslent to S^{n}
Princaré
conj.
N
homeomorphic

Rok : 3 homotopy spheres nor difteonorptic to S^{1}, these are called exotic spheres

Metrics
(M, g) Riexsmidn manifold, dim M even
It there exist, a complex structure J on M compatible with g, then (M, g) is Kähler.

Ex: - Riemann surfaces

- projective complex manifold.
$(M, j) \quad \operatorname{din} M$ odd
Cone $\left(C(M):=M \times R_{30}, \bar{s}=r^{2} g+d r^{2}\right)$ where r is the coordinate on $R_{>0}$.

Det. $\left(M_{1}\right)$ is Saskise if $(C(M), \bar{g})$ dadils a kibler coplex structure.
(M, y) is Soski-Einstein if $(C(M), \bar{g})$ is Kibler and ga Einstein (Ricj: λ_{g})

Why: String theory
Ex: $\quad\left(s^{2 n-1}, g_{E}\right)$ is Jaso k_{i} - Einstain

$$
\left(C\left(s^{2 n-1}\right), \overline{9}\right) \simeq\left(\mathbb{C}^{n}-404,9 c^{n}\right)
$$

\oint Results
Becall: A ravifold is paralleliasble it its targent burdle is brivid. Sn bands o puall. nanifol.l (disk)

Boyer - Galicki-Kollár 'o5 J SE metries on any homotopy sphere $\sum_{1}^{4 n+1} \quad(n \geq 1)$ Hat bounds pasall. manitolols.
Conj: Tiue also in dim 4n-1.
Collins-Stíke lybidi '19 \exists-nany $S E$ metrics on S^{5}.
Conj: 3 ocnary $S E$ netrics n every standad $S^{2 n-1}, n \geq 3$.
Thm (Liv-Sano-T.) Any homotopy sphere $\Sigma^{2 n-1}$ that bounds parall. maitilds admits a-nany SE retics,
fo The construction

$$
\begin{gathered}
n \geq 3, \quad a=\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{Z}^{n+1}, a_{i}>1 . \\
y(a) \therefore\left\{z_{0}^{a}+z_{2}^{a_{1}}+\ldots+z_{n}=0\right\} \in \mathbb{C}^{n+1} \quad \text { Brieskom-Phan } \\
\text { jing. }
\end{gathered}
$$

Milnor '68: The link $L(a):=Y(e) n S^{2 n+2}$ is a snooth compat sinply comected $(2 n-1)$-naritold that bounds a parall. maifold.

Thm $A(-) \quad$ Assume $a_{0} \leq a_{2} \leq \ldots \leq a_{n}$. $L(a)$ adaits a $S E$-metric ift $1<\sum_{i=0}^{n} \frac{1}{e_{i}}<1+\frac{n}{a_{n}}$.
"proot"

$$
d_{i}=\operatorname{lc-}\left\{a_{i}\right\}, \quad d_{i}=\frac{d}{a_{i}}
$$

$$
\mathbb{C}^{*} \otimes y(a) \leq \mathbb{C}^{n} \quad \lambda \cdot\left(z_{1}, \ldots, z_{n}\right)=\left(\lambda^{d_{n}} z_{0}, . ., \lambda^{d_{n}} z_{n}\right)
$$

quot. d, d

$$
X^{\circ+b} \subseteq \mathbb{P}\left(d_{0}, \ldots, d_{n}\right) \text { weigted byp. }
$$

Boyer-Gaticki: L(e) adrike a SE netric itt
x^{03} doriti a $F_{\text {dio }} K E$-netric.
Note: $x^{\alpha b} F_{\text {no }} \Leftrightarrow-K_{x^{\alpha b}}$ is irde $\Leftrightarrow 1 . \sum \frac{1}{s_{i}}<0$.
Rougly speaking $\quad X^{\alpha b}$ adoits a KE-netic itt (deep)
$X^{\text {oob }}$ is k-polystable
It's easy to slow that $x^{0.3}$ it tupibstaile. is
\}Explest inarples $n \geq 3$
Kervaire - Milnor
$n=2 m+1$ dd $\quad b \mathscr{P}_{4 m+1}$ is eithor O or \mathbb{Z}_{2}
$n=2 m$ even $\quad b P_{4 m}$ is biy

$$
y(a)=\left\{z_{0}^{a_{0}}+\ldots+z_{n}^{a_{n}} \div 0\right\} \quad L(e) \operatorname{lin} k
$$

graph $G(e):$ vertices) a_{i} e_{i} sod a_{j} are conected it $\operatorname{ccd}\left(u_{i}, e_{j}\right) \neq 1$.

Briestoon: it $G(a)$ contains it least tex isolated points, then $L(a)$ is ban. to $S^{2 n-1}$.

Assume $L(a) \in b P_{4 m}$. The difteonorphism type of $L(a)$ is given by $\frac{\tau(a)}{8} \operatorname{nod}\left(b P_{4 m}\right)$ where τ il the signature of the Milo timbre.

Note: there is a combinatorial formula tor τ.

Beieskon spheres: $\quad a=(2,2, \ldots, 2,3,6 K-1) \in \mathbb{U}^{n+1}$ $n=2 m$
$L(a) \in b P_{4 m}, \frac{\tau(a)}{8}=(-1) K \operatorname{nod}\left|b P_{k m}\right|$
so all exotic spheres are constructed.

$$
b P_{4 n}^{i n}
$$

We generalised such examples.

