Birationally Equivalent Landau-Ginzburg models

Bruno Suzuki
Universidade de São Paulo

Online Algebraic Geometry Seminar
University of Nottingham
July 2023

Objectives

- Toric potential
- Lie potential
- Birational equivalence of LG models

Landau-Ginzburg models

A Landau-Ginzburg model (LG) is a pair (X, w) formed by a variety X and a holomorphic function $w: X \rightarrow \mathbb{C}\left(\right.$ or $\left.\mathbb{P}^{1}\right)$ called the superpotential.

Deformations

We consider both deformations of varieties and deformations of the potential, combining them to describe deformations of LG models, obtaining families

$$
\mathrm{LG} \sim \sim \mathrm{LG}^{\prime}
$$

where $L G$ and $L G^{\prime}$ behave very differently dualitywise.

LG models - examples

Especially well behaved LG models: Lefschetz fibrations!

Topological Lefschetz fibration

Let Y be a complex variety. A smooth function $f: Y \rightarrow \mathbb{C}\left(\right.$ or $\left.\mathbb{P}^{1}\right)$ is a Topological Lefschetz fibration if:

- f has finitely many critical points of (holomorphic) Morse type so that around each critical point

$$
f\left(z_{0}, \ldots, z_{n}\right) \simeq z_{0}^{2}+\cdots+z_{n}^{2}
$$

- $\left.f\right|_{Y-\{\text { singular fibres }\}}$ is locally trivial.

Symplectic Lefschetz fibrations

A a topological Lefschetz fibration $f: Y \rightarrow \mathbb{C}$ on a symplectic manifold (Y, ω) is a symplectic Letschetz fibration if:

- for every regular value $p \in \mathbb{C}$, the level Y_{p} is a symplectic submanifold of Y, and
- for each singular point Q_{i} the symplectic form $\omega_{Q_{i}}$ is non degenerate over the tangent cone of $Y_{Q_{i}}$ at Q_{i}.

Examples from algebraic geometry

Donaldson proved that every symplectic 4 manifold has the structure of Lefschetz pencil.

A TLF can be obtained from blowing-up the base locus of the pencil.

TLFs from pencils

Modify a Lefschetz pencil by blowing up the base locus transforming it to a TLF.

Figure: Pencil to fibration.

Symplectic Lefschetz fibrations via Lie theory

Let G be a complex semisimple Lie group with Lie algebra \mathfrak{g} and Cartan subalgebra \mathfrak{h}. Given the Hermitian form \mathcal{H} on \mathfrak{g}, define the symplectic form on \mathfrak{g} by

$$
\omega\left(X_{1}, X_{2}\right)=\operatorname{im} \mathcal{H}\left(X_{1}, X_{2}\right)
$$

Symplectic Lefschetz fibrations via Lie theory

For $H_{0} \in \mathfrak{h}$ we consider the adjoint orbit:

$$
\mathcal{O}\left(H_{0}\right)=\operatorname{Ad}(G) \cdot H_{0}=\left\{g H_{0} g^{-1} \in \mathfrak{g}: g \in G\right\}
$$

together with the symplectic form ω.

Minimal adjoint orbit

Let \mathcal{O}_{n} the adjoint orbit of $H_{0}=\operatorname{Diag}(n,-1, \ldots,-1)$ in $\mathfrak{s l}(n+1, \mathbb{C})$, we call it the minimal adjoint orbit.

- The minimal adjoint orbit \mathcal{O}_{n} is diffeomorphic to the cotangent bundle of the projective space \mathbb{P}^{n}.
- \mathcal{O}_{n} is a nontoric Calabi-Yau manifold.

Lefschetz fibrations on adjoint orbits

Theorem (Gasparim, Grama, San Martin)
Given $H_{0} \in \mathfrak{h}$ and $H \in \mathfrak{h}_{\mathbb{R}}$ with H a regular element. The "height function" $f_{H}:\left(\mathcal{O}\left(H_{0}\right), \omega\right) \rightarrow \mathbb{C}$ defined by

$$
f_{H}(x)=\langle H, x\rangle \quad x \in \mathcal{O}\left(H_{0}\right)
$$

has a finite number of isolated singularities and defines a symplectic Lefschetz fibration.

Minimal orbit of $\mathfrak{s l}(n+1, \mathbb{C})$

For

$$
H_{0}=\left(\begin{array}{cccc}
n & & & \\
& -1 & & \\
& & \ddots & \\
& & & -1
\end{array}\right) \in \mathfrak{s l l}(n+1, \mathbb{C})
$$

the orbit $\mathcal{O}\left(H_{0}\right)$ is diffeomorphic to $T^{*} \mathbb{P}^{n}$ and the potential

$$
f_{H}(x)=\langle H, x\rangle, \quad x \in \mathcal{O}\left(H_{0}\right)
$$

has $n+1$ critical points.

Example - Lie potencial on $\mathfrak{s l}(n+1, \mathbb{C})$

Let $\mathfrak{g}=\mathfrak{s l}(n+1, \mathbb{C})$ and choose H_{0} such that the flag $\mathbb{F}_{H_{0}}$ is the projective space \mathbb{P}^{n}. We take

$$
H_{0}=\left(\begin{array}{cccc}
n & & & \\
& -1 & & \\
& & \ddots & \\
& & & -1
\end{array}\right), \quad H=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n+1}
\end{array}\right)
$$

Then

$$
\begin{aligned}
& f_{H}\left(e^{\operatorname{ad}(Y)} e^{\operatorname{ad}(X)} H_{0}\right)= \\
& \quad=2(n+1)\left[\operatorname{tr}\left(H H_{0}\right)+\left(\lambda_{1}-\lambda_{2}\right) x_{1} y_{1}+\cdots+\left(\lambda_{1}-\lambda_{n+1}\right) x_{n} y_{n}\right]
\end{aligned}
$$

which is a degree 2 polynomial.

Local expression of the Lie potential

We call the expression of f_{H} written on a chart around H_{0} the Lie potential on $\mathcal{O}_{n} \subset \mathfrak{s l}(n+1, \mathbb{C})$. It is given by

$$
\mathbf{f}_{H}\left(H_{0}\right)=\operatorname{tr}\left(H H_{0}\right)+\left(\lambda_{1}-\lambda_{2}\right) x_{1} y_{1}+\cdots+\left(\lambda_{1}-\lambda_{n+1}\right) x_{n} y_{n} .
$$

HMS for the adjoint orbit \mathcal{O}_{1} of $\mathfrak{s l}(2, \mathbb{C})$

Choose in $\mathfrak{s l}(2, \mathbb{C})$ the elements

$$
H=H_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

- Hence \mathcal{O}_{1} is the set of matrices in $\mathfrak{s l}(2, \mathbb{C})$ with eigenvalues ± 1.

HMS for the adjoint orbit \mathcal{O}_{1} of $\mathfrak{s l}(2, \mathbb{C})$

Choose in $\mathfrak{s l}(2, \mathbb{C})$ the elements

$$
H=H_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

- Hence \mathcal{O}_{1} is the set of matrices in $\mathfrak{s l}(2, \mathbb{C})$ with eigenvalues ± 1.
- \mathcal{O}_{1} forms a submanifold of $\mathfrak{s l}(2, \mathbb{C})$ of real dimension 4 (a complex surface).

HMS for the adjoint orbit \mathcal{O}_{1} of $\mathfrak{s l}(2, \mathbb{C})$

Choose in $\mathfrak{s l}(2, \mathbb{C})$ the elements

$$
H=H_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

- Hence \mathcal{O}_{1} is the set of matrices in $\mathfrak{s l}(2, \mathbb{C})$ with eigenvalues ± 1.
- \mathcal{O}_{1} forms a submanifold of $\mathfrak{s l}(2, \mathbb{C})$ of real dimension 4 (a complex surface).
- In this case the Weyl group is $\mathcal{W}=\{ \pm 1\}$.

HMS for the adjoint orbit \mathcal{O}_{1} of $\mathfrak{s l}(2, \mathbb{C})$

Choose in $\mathfrak{s l}(2, \mathbb{C})$ the elements

$$
H=H_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

- Hence \mathcal{O}_{1} is the set of matrices in $\mathfrak{s l}(2, \mathbb{C})$ with eigenvalues ± 1.
- \mathcal{O}_{1} forms a submanifold of $\mathfrak{s l}(2, \mathbb{C})$ of real dimension 4 (a complex surface).
- In this case the Weyl group is $\mathcal{W}=\{ \pm 1\}$.
- Therefore, the potential $f_{H}=: \mathcal{O}_{1} \rightarrow \mathbb{C}$ has two singularities, namely $\pm H_{0}$.

Fukaya-Seidel category for LG(2) $=\left(\mathcal{O}_{1}, f_{H}\right)$

Lemma

The Fukaya-Seidel category Fuk(LG(2)) is generated by two Lagrangians L_{0} and L_{1} with morphisms:

$$
\operatorname{Hom}\left(L_{i}, L_{j}\right) \simeq \begin{cases}\mathbb{Z} \oplus \mathbb{Z}[-1] & i<j \tag{1}\\ \mathbb{Z} & i=j \\ 0 & i>j\end{cases}
$$

where we think of \mathbb{Z} as a complex concentrated in degree 0 and $\mathbb{Z}[-1]$ as its shift, concentrated in degree 1 , and the products m_{k} all vanish except for $m_{2}(\cdot, I)$ and $m_{2}(1, \cdot)$.

Quasi-Vampires

Theorem (Ballico, Barmeier, Gasparim, Grama, San Martin)

- $L G(2)$ has no projective mirrors.
- $\overline{L G(2)}$ has no projective mirrors.

This means:
For any projective variety X we have

$$
D^{b} \operatorname{Coh}(X) \neq F u k(\operatorname{LG}(2)) .
$$

Potentials on $T^{*} \mathbb{P}^{n}$

Starting with a Hamiltonian action of $\mathbb{T}=\mathbb{C}^{*}$ on $T^{*} \mathbb{P}^{n}$ expressed in the open chart $V_{0}=\left\{x_{0} \neq 0\right\}$ by

$$
\mathbb{T} \cdot V_{0}=\left\{\left[1, t^{-1} x_{1}, \ldots, t^{-n} x_{n}\right],\left(t y_{1}, \ldots, t^{n} y_{n}\right)\right\}
$$

we obtain a Hamiltonian vector field $T^{*} \mathbb{P}^{n}$

$$
X\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\left(-x_{1}, \ldots,-n x_{n}, y_{1}, \ldots, n y_{n}\right) .
$$

and a potential

$$
\mathbf{h}_{c}=\sum-2 i x_{i} y_{i}+c .
$$

Toric Potential

We call

$$
\mathbf{h}_{c}=\sum-2 i x_{i} y_{i}+c
$$

a toric potential on $T^{*} \mathbb{P}^{n}$.

Mirrors from Linear data

Linear data associated to a toric Landau-Ginzburg model

- Div: encodes the divisor of the character-to-divisor map.
- Mon: describes infinitesimal action on monomials.

The dual toric Landau-Ginzburg model is obtained by exchanging Div and Mon, that is

$$
\operatorname{Div}(X)=\operatorname{Mon}\left(f^{\vee}\right), \quad \operatorname{Div}\left(X^{\vee}\right)=\operatorname{Mon}(f)
$$

The Selfdual model LG_{0}

The LG model

$$
\mathrm{LG}_{0}=\left(T^{*} \mathbb{P}^{1}, x+y+\frac{y^{2}}{x}\right)
$$

is dual to itself. Selfduality of this LG model is verified by simply pointing out that in this case the toric data is

$$
\text { Mon }=\operatorname{Div}=\left(\begin{array}{rr}
1 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right)
$$

Example - Selfdual LG model

A nontrivial duality

Consider the Landau-Ginzburg models

$$
\begin{gathered}
(X, f)=\left(\mathbb{P}^{2}, x+y+\frac{1}{x}+\frac{1}{y}\right) \\
(Y, g)=\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, x+y+\frac{1}{x y}\right)
\end{gathered}
$$

Since the Div matrix is given by the inward normals of the moment polytope, we have:

$$
\operatorname{Div}_{X}=\left(\begin{array}{rr}
1 & 0 \\
0 & 1 \\
-1 & -1
\end{array}\right), \quad \operatorname{Div}_{Y}=\left(\begin{array}{rr}
1 & 0 \\
0 & 1 \\
-1 & 0 \\
0 & -1
\end{array}\right)
$$

To see that (Y, g) is dual to (X, f) just observe that $\operatorname{Mon}_{g}=\operatorname{Div}_{X}$, and $\operatorname{Div}_{Y}=\operatorname{Mon}_{f}$.

A nontrivial duality

Deformation family

A (commutative) deformation family of a Landau-Ginzburg model (X, w) is a smooth family of Landau-Ginzburg models $\left(X_{t}, w_{t}\right)$, with $t \in D \subset \mathbb{C}^{n}$ an open ball containing 0 , such that $\left(X_{0}, w_{0}\right)=(X, w)$.

We call X_{t} a deformation of X_{0}, denoted by

$$
\left(X_{0}, w_{0}\right) \sim \sim\left(X_{t}, w_{t}\right) .
$$

Deformation of LG models - Example 1

Consider $T^{*} \mathbb{P}^{1}$ with coordinates $([1, x], y)$ and the Landau-Ginzburg models

$$
\mathrm{LG}_{0}=\left(T^{*} \mathbb{P}^{1}, x+y+\frac{y^{2}}{x}\right), \quad \mathrm{LG}_{1}=\left(T^{*} \mathbb{P}^{1}, 2 x\right)
$$

Using the potential

$$
w_{t}=(1-t) 2 x+t\left(x+y+\frac{y^{2}}{x}\right)
$$

on $X_{t}=T^{*} \mathbb{P}^{1}$ we obtain the deformation

$$
\mathrm{LG}_{0} \leadsto \sim \mathrm{LG}_{1} .
$$

Deformation of LG models - Example 2

Our next objective is to describe how duality works for the deformation family

$$
\mathrm{LG}_{1}=\left(T^{*} \mathbb{P}^{1}, h_{c}\right) \sim \sim \mathrm{LG}_{2}=\left(\mathcal{O}_{1}, f_{H}\right)
$$

We will use the deformation of the Hirzebruch surfaces \mathbb{F}_{2} to \mathbb{F}_{0}, extending it to a deformation of partially compactified Landau-Ginzburg models.

$$
\left(\mathbb{F}_{2}, \mathbf{h}\right) \sim \sim\left(\mathbb{F}_{\mathbf{0}}, \mathbf{f}\right)
$$

Deformation of LG models - Example 2

We will make use of the following result:
Lemma
\mathbb{F}_{2} deforms to \mathbb{F}_{0}.

Figure: \mathbb{F}_{2} deforms to \mathbb{F}_{0}

Deformation of LG models - Example 2

This induces the deformation $T^{*} \mathbb{P}^{1} \sim \sim \mathcal{O}_{1}$.

Deformation of LG models - Example 2

The deformation of LG models:

$$
\left(T^{*} \mathbb{P}^{1}, h\right) \sim\left(\mathcal{O}_{1}, f_{H}\right)
$$

is obtained from the deformation \mathbb{F}_{2} to \mathbb{F}_{0}.

Deformation of LG models - Example 3

Combining the deformations

$$
\mathrm{LG}_{0} \sim \sim \mathrm{LG}_{1}, \quad \mathrm{LG}_{1} \sim \sim \mathrm{LG}_{2},
$$

we obtain a new deformation that changes both the variety and the potential, namely

$$
\mathrm{LG}_{0} \leadsto \sim \mathrm{LG}_{2} .
$$

We then wish to compare the mirrors of $L G_{0}$ and $L G_{2}$, and we will see that they behave very differently. Since $T^{*} \mathbb{P}^{1}$ is a toric variety, we can use toric duality for LG_{0}.

Comparing the Lie potential and the toric potential

On the open chart $V_{0}=\left\{x_{0} \neq 0\right\}$ of $T^{*} \mathbb{P}^{n}$ we have defined two potentials:

Toric potential:

$$
\mathbf{h}_{c}=-2 x_{1} y_{1}-\ldots-2 n x_{n} y_{n}+c
$$

Lie potential:

$$
\mathbf{f}_{H}=<\cdot, H>
$$

Birationally equivalent LG models

Theorem (S., 2023)
For each $n \in \mathbb{N}$, there exist matrices $H, H_{0} \in \mathfrak{s l}(n+1, \mathbb{C})$ and a constant $c \in \mathbb{C}$ such that the Lie potential on the minimal adjoint orbit \mathcal{O}_{n} and the toric potential on the cotangent bundle $T^{*} \mathbb{P}^{n}$ coincide on dense open charts, that is $\mathbf{f}_{H}=\mathbf{h}_{c}$.

Proof

Take

$$
H_{0}=\left(\begin{array}{cccc}
n & & & \\
& -1 & & \\
& & \ddots & \\
& & & -1
\end{array}\right) \in \mathfrak{s l}(n+1, \mathbb{C})
$$

$$
H=\left\{\begin{array}{l}
\operatorname{Diag}(-n, \ldots,-4,-2,0,2,4, \ldots, n) \quad \text { if } n \text { is even, } \\
\operatorname{Diag}(-n, \ldots,-3,-1,1,3, \ldots, n) \quad \text { if } n \text { is odd }
\end{array}\right.
$$

and $c=-n^{2}-n$.

Proof (cont.)

On the Lie side, we have:

$$
\mathbf{f}_{H}\left(H_{0}\right)=\operatorname{tr}\left(H H_{0}\right)+\left(\lambda_{1}-\lambda_{2}\right) x_{1} y_{1}+\cdots+\left(\lambda_{1}-\lambda_{n+1}\right) x_{n} y_{n},
$$

where the eigenvalues of $H=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)$ satisfy

$$
\lambda_{1}-\lambda_{j}=-2(j-1)
$$

so that

$$
\mathbf{f}_{H}\left(H_{0}\right)=-n^{2}-n-2 x_{1} y_{1}-\cdots-2 n x_{n} y_{n} .
$$

On the toric side,

$$
\begin{aligned}
\mathbf{h}_{c} & =c-2 x_{1} y_{1}-\ldots-2 n x_{n} y_{n} \\
& =-n^{2}-n-2 x_{1} y_{1}-\cdots-2 n x_{n} y_{n} .
\end{aligned}
$$

Birational equivalence

Two Landau-Ginzburg models are called birationally equivalent if their domains are birationally equivalent varieties and their potentials coincide on Zariski open sets.

Birational Equivalence

A rigorous version of our result may be stated as:
Theorem (S., 2023)
For each $n \in \mathbb{N}$, there exist matrices $H, H_{0} \in \mathfrak{s l}(n+1, \mathbb{C})$ and a constant $c \in \mathbb{C}$ such that the $L G$ models $\left(\mathcal{O}_{n}, f_{H}\right)$ and $\left(T^{*} \mathbb{P}^{n}, h_{c}\right)$ are birationally equivalent.

Proof.
The expressions of \mathbf{f}_{H} and \mathbf{h}_{c} for the potentials f_{H} and h_{c} coincide on Zariski open sets.

Example - Duality vs. deformation

We consider $T^{*} \mathbb{P}^{1}$ with coordinates $([1, x], y)$ and the family of potentials

$$
w_{t}=(1-t)\left(x+y+\frac{y^{2}}{x}\right)+t(2 x)
$$

Then we have that the initial LG model $L G_{0}$ is selfdual, while the final LG model is defined by $\mathrm{LG}_{1}=\left(T^{*} \mathbb{P}^{1}, 2 x\right)$ which has the toric data

$$
\operatorname{Div}=\left(\begin{array}{rr}
1 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right), \quad \text { Mon }=(10)
$$

Example - Duality vs. deformation

Now, inverting the matrices by toric duality gives us the LG_{1}^{\vee} model

$$
\operatorname{Div}=(10) \quad \text { Mon }=\left(\begin{array}{rr}
1 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right)
$$

Example - Duality vs. deformation

Now, inverting the matrices by toric duality gives us the LG_{1}^{\vee} model

$$
\operatorname{Div}=(10) \quad \text { Mon }=\left(\begin{array}{rr}
1 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right)
$$

We conclude that this family takes a selfdual LG model to another very far from selfdual.

The End

Obrigado! \sim Thank you!

