University of Nottingham

$$
\text { October 5, } 2023
$$

Nawaz Sultani

Gromov - Witter Theory of
Non-Convex Complete Intersections
contains results joint with Felix Janda Yang thou Rachel Webb

Orbifold GW theory

- $e v_{i}: \bar{M}_{g i n}(x, \beta) \longrightarrow I X_{k}$ inertia stack
evaluation mouphism
- $H_{c r}^{x}(x)$ Chen-Ruan chomology
ring
strwempding $\quad H_{c k}^{\prime \prime}(x)=H^{*}(I X)$ as nen graded gouns'.
- Gw-invariont

$$
\left\langle\gamma_{1}, \ldots, \gamma_{n}\right\rangle_{y, n, \beta}=\int_{[\bar{m}(x, \beta)]^{v i r}} \prod_{i} e v_{i}^{*} \gamma_{i} \quad \gamma_{i} \in H_{C Q}^{*}(x)
$$

Quantum Lefshetz Assume $g=0$
Let
 ie $H^{\prime}\left(C, f^{\prime \prime} E\right)=0$ for all stable maps $c \xrightarrow{f} y$

Then

$$
i_{*}\left[M_{0, n}(x, \beta)\right]^{v i r}=\left[M_{0, n}(y, i * \beta)\right]^{v i r} \cap\left(E_{0, n, \beta}\right)
$$

$\leadsto G W$ invariants of x can be compented in terms of GW of y

When X is a scheme easier to check
E convex $\longleftrightarrow c_{1}\left(L_{i}\right) \cdot \beta \geqslant 0 \quad \forall i$
eng.
for $y=\mathbb{P}^{n}, L_{i}=\theta\left(n_{i}\right)$
convex if $n: \geq 0 \quad \forall i$

But this is not true when x is an orbifold: (CGIJJM, 12)
E convex \longleftrightarrow pulled back from souse moduli space very restrictive assumption
egg.

$$
y=\mathbb{P}\left(w_{0}, \ldots . w_{n}\right), L_{i}=\sigma\left(n_{i}\right)
$$

need n_{i} divisible by $\operatorname{gcd}\left(w_{0}, \ldots, \omega_{n}\right)$

OS $c^{-R^{4}} \therefore$ Scheme - theoretic proofs will not work in orbitold case

Goal: Find a way to compute invariants for complete intersections when convexity fails

Assume for talk: X is Calabi-Yau threefold in weighted projective stack $P($ wo r...., wo $)$ egg.

Quasimap Theory
Consider - W affine variety

- G reductive group acting on W
- θ G.chavacler

Have two stack quotients

$$
[\omega / \theta G] c[\omega / G]^{\circ}
$$

Def. A quasimap to $X=[\omega / 0 G]$ is a representable maphism

$$
f: C \longrightarrow[w / G]
$$

Sit. $f^{-1}([W / G]-[w / / \theta G])$ is zero.dim and contains no markings

F a family of stability conditions, parameterized by $\varepsilon \in \mathbb{Q}, 0 \cup\left\{0^{+}, \infty\right\}$
\leadsto get family of moduli spaces $Q_{\text {on }}^{\varepsilon}(x, \beta)$

- $Q_{0 i n}^{\infty}(x, \beta)=\bar{\mu}_{a m}(x, \beta)$ moduli of stable maps

Can "wall-cross"

$$
Q_{0, n}^{0_{0}^{+}}(x, \beta) \longleftrightarrow \frac{\varepsilon}{\longleftrightarrow} Q_{0, n}^{\infty}(x, \beta)
$$

easier to work with
on $\Sigma=\infty$ side, define

$$
J\left(t, q_{1}, z\right)=1+t / z+\sum_{n, \beta} q^{3} \phi_{i}\left\langle\frac{d_{i}}{4-z_{1}} t, \ldots, t\right\rangle_{0, n, \beta}^{\substack{\text { poincone side, define } \\ \text { dub it }}}
$$ $t \in H_{C R}^{n}(x)$ generic element, q, z formal vowiables generating series of GW invariants with insertions t on $\varepsilon=0^{+}$, have a series

$$
I(q, z)
$$

defined by localization on substack of $\operatorname{Ham}(P(1, r),[w / G])$

$$
\mathbb{C}=[\mathbb{P}(1, r) \quad \lambda \cdot[x: y]=[x: \lambda y]
$$

Can be computed explicitly

Thu (thou) The two series satisfy

$$
J(\underset{t}{\underline{q}(q, z)}, q, z)=I(q, z)
$$

where $\mu(q, z)=[z I-z]+\longrightarrow$ non-negetive part

$$
I=1 \cdot \Delta\left(z^{-1}\right)
$$

Note: Generic insertion t of I depends on I here
Questions:
(1) What type of insertions can we obtain?
(1) Can we recover individual GW invariants?

Admissible Classes
We define a subbing of $\mathcal{X} \subset \subset H_{C R}^{\prime \prime}(x)$ that we call the admissible state space. Call $\phi \in \mathcal{H}$ admissible class.

Notably, we have
subbing
generated by
clans pulled back
from ambient
space

Extended GIT
Use that I-function is sensitive to GIT presentation but J is not
After specifying a certain basis $\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ of admissible classes, introduce new GIT presentation

for weighted prof space, take $\theta_{e}=(1, \ldots, 1)$

- The weight matrix of the action by $\left(C^{x}\right)^{m+1}$ looks like
$\left(\begin{array}{cc|ccc}\omega_{0} & \cdots & \cdots & \omega_{n} & 0 \\ \cdots & 0 \\ \hline a_{10} & \cdots & \cdots & a_{0 n} & 1 \\ & & 0 \\ \vdots & & \vdots & \ddots & \\ a_{m 0} & \cdots & \cdots & a_{m n} & 0 \\ & & \ddots\end{array}\right)$
weights $a_{i j}$ are explicitly defined depending on class ϕ_{i} in chosen basis
- We defined by extending the defining vector bundle and section to $C^{\text {arms }}$
- Explicit choice of extension based on weight matrix

Main Result
There is an explicit I function associciled to the extended GIT

$$
\left.I\left(q_{0}, \ldots, q_{m}, z\right) \in\right)\left([z]\left[q_{0}, \ldots, q_{m}\right]\right.
$$

and an invertible ring homomorphism

$$
\mathbb{Q}\left[Q, t_{1}, \ldots, t_{m}\right] \underset{\sim}{\lrcorner} \mathbb{Q}\left[q_{0}, \ldots, q_{m}\right] \quad \sum t_{i} d_{i}
$$

s.t.

$$
\begin{aligned}
& J\left(\sum t: \phi:, Q, z\right) \\
& \text { generic insertion } \\
& \text { in } X
\end{aligned}
$$

Some remarks:

- invertibility ensures recovery of individual GW invariants by giving explicit formula for $J(t, Q, z)$
- By our choice of ϕ_{i} all admissible classes appear as insertions This includes all invariants normally computed by a Quantum-Cefschetz type theorem

Example.

Possible equation: $x_{0}^{7}+x_{1}^{7}+x_{2}^{7}+x_{3}^{7}+x_{4}^{2} \int_{3}=F$

$$
V(F)=\omega \leadsto x_{7}=\left[\omega / / c_{0} c^{*}\right] \quad\left[t / w_{3}\right]=B_{1+3}
$$

$$
I X_{7}=X_{7} \sqcup B M_{3} \sqcup B M_{3}
$$

dejee 2 class corresponding to Ba_{3} sector

$$
H_{i R}(x)=H^{*}(x) \oplus\left\langle\phi_{y_{s}}\right\rangle \varphi\left\langle\phi_{z / 5}\right\rangle
$$

dyer 4 clam

Recall I-function comprised from quasimap $P^{\prime}(l, r) \rightarrow\left[\omega / \mathbb{C}^{*}\right]$ only one stack point.

- However, convexity condition only starts failing for curves with >1 stack point
\longrightarrow Naive I-function doesn't capture information of invariants involved in convexity failure (is. those invariants with multiple insertions)

Problem:
To get more expressive I-function, need to encode date of multiple stanley points into quasimaps from $\mathbb{P}(1, r)$
"Extended GIT idea"

$\mathbb{P}(1.1,1,1,3)$

$$
f \longleftrightarrow\left\{\begin{array}{ll}
f & s_{0} \ldots, \Omega_{3} \in H^{\circ}(1) \\
l & s_{4}<H^{\circ}\left(L^{3}\right)
\end{array}\right\}
$$

$\mathcal{L}=\pi^{*} L \otimes T_{i} \mathcal{S}^{\text {root bundle. } T=\prime=\theta(p / s), T^{03} \cong O(p)} \begin{aligned} & \text { for some } L_{1}:\end{aligned}$

$$
H^{i}(\mathcal{L}) \cong H^{i}(L) \quad \text { but } H^{i}\left(L^{03}\right) \cong H^{i}\left(L^{3} \otimes O(p)\right)
$$

Defining fuanimap $C \rightarrow\left[\omega / \mathbb{C}^{*}\right]$ wing L misses data

Write

$$
X=\left[w_{e} / /_{\theta}\left(I^{*}\right)^{2}\right]
$$

$$
\stackrel{q}{x}^{W_{e}}=V\left(\left(x_{1}^{7}+\cdots+x_{3}^{7}\right) y^{2}+x_{3} x_{4}^{2}\right)
$$

degree $(7,2)$
($\left.C^{-1}\right)^{2}$ acts on \mathbb{C}^{6} with weight matrix

$$
\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

With this presentation, quasimap to x requires 2 line bundle choices Consider

$$
C \longrightarrow\left[^{W e} /\left(G^{*}\right)^{2}\right] \text { defined by }
$$

bundles: L, $O(p)$
sections $s:$ determined by $H^{\circ}(\rho) \equiv H^{\circ}(L), H^{0}\left(e^{3}\right)=H^{\circ}\left(L^{\circ} \sigma(p)\right.$ lost section S_{6} is tautological section of $\theta(p)$

Example of non-andrient admissible class
$X_{24} \subset \mathbb{P}(1,4,4,6,9)$
(generically)
IX X_{24} contains sector that looks like

Results hold for geneval complete intersections in Tonic Steveres is. $X \subset\left[V \mathbb{Q}_{\theta} T\right]$ for T a torus

Biggest Change: Complexity of mirror map depends depends on degrees of classes you extend by
e.g. after extending by classes of high degree, mirror map for Foo hypersurface may resemble that of ganeval type hypersurface

Non-Abelian Quotients

Want to consider $X=[W / G]$ Got abelian
Assume G is connected
Thy (webb)
Let $T C G$ be maximal torus
Then
$I_{[w / a]}$ is obtained by modifying $I_{\left[w_{T K}\right]}$ with an abelianization factor explicitly
computable

Let W be the Were group of TCG
$\rightarrow W$ acts on $H_{C R}\left(X_{T}\right)$, induced by action on $I X_{T}$ abelion quotient
Weyl-invowant classes give classes in $H_{C R}^{2}\left(X_{G}\right)$ non-abelieien
The (s .webb)
Suppose γ is the fundamental class of a Weyl-invariant twisted sector

Then there exists a GIT extension and extended I-function that captures data about GW invariants with insertions γ

Application Del Mezzo in weighted Grassmamion

$$
\begin{aligned}
& X_{1,7 / 3} \subset \omega \operatorname{Gr}(2,5) \\
& \omega \operatorname{Gr}(2,5): G^{10} / / G l_{2} . \\
& \text { For } G l_{2}=\left(S l_{2} \times 6^{*}\right) / \mu_{2} \text {, action riven by } \\
& \left(A_{1} \mu\right) \cdot\left[\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
b_{1} & b_{2} & b_{3} & b_{4} & b_{5}
\end{array}\right]=N \cdot\left[\begin{array}{llll}
\mu a_{1} & \mu a_{2} & \mu_{3} & \mu^{3} a_{4} \\
\mu b_{1} & \mu b_{2} & \mu^{3} b_{5} & \mu^{3} b_{4} \\
\mu^{3} b_{5}
\end{array}\right]
\end{aligned}
$$

$X_{1,7 / s}$ defined by generic section $s \in L^{04}$
L defined by character $(A, \mu) \rightarrow \mu^{4}$

Oneto-Petracei give a conjectured formula for a specialization of the Quantum Period of $X_{1.7 / 3}$

Defined as specialization of $J(t, \theta, z)$ along unit class, where $t=\sum t i \mathcal{I}_{\mathrm{g}}$:

1 Ig : is unit class of twisted sector set. $\operatorname{deg}\left(1 g_{i}\right)<2$.

For $X_{1,713}$, there is one such class \mathcal{I}_{3} that is required to obtain quantum period and it is Weyl-invariont!
(1)

We can compute I.function of GIT T extended by $1 y_{3}$ abelian-norabelian corr. used.
(2) Can obtain a formula for $J\left(t \cdot 1 y_{3}, Q, z\right)$ explicitly from I
(3) Specialize to recover full quantum period

Thu
We show that the quantum period obtained above agrees with the conjectured formula after an explicit Specialization

OD's conjecture part of a larger conjecture on orbiffold Del Dezzos
Imprecisely steted ...
Conj (Coakes, Kasprzyk, ..)
Regularized Qucantum Period = Classical perived of Lacment polynumial obterined via toric degenevation

$$
9
$$

computed via program S- weblb by Coves-kasprzylk
computationol
evidence suggents yes.
(Future work)

