K-moduli space of del pezzo surface pairs Joint work with Long Pan and Haoyu Wu

Fei Si
BICMR, Peking university

Background

We work over \mathbb{C}.
Definition
K3 surface is a smooth projective surface with $H^{1}\left(S, \mathcal{O}_{S}\right)=0$ and $K_{S} \sim \mathcal{O}_{S}$.

Background

We work over \mathbb{C}.

Definition

K3 surface is a smooth projective surface with $H^{1}\left(S, \mathcal{O}_{S}\right)=0$ and $K_{S} \sim \mathcal{O}_{S}$.

K3 surfaces S with additional structure are usually related to Fano geometry ($-K_{X}$ ample). These include

Background

We work over \mathbb{C}.

Definition

K3 surface is a smooth projective surface with $H^{1}\left(S, \mathcal{O}_{S}\right)=0$ and $K_{S} \sim \mathcal{O}_{S}$.

K3 surfaces S with additional structure are usually related to Fano geometry ($-K_{X}$ ample). These include

- Anti-canonical sections of Fano 3-fold. For example, X is a prime Fano 3-fold with $-K_{X} \sim r H$ and $S \in\left|-K_{X}\right|$ general, then $\left(S,\left.H\right|_{S}\right)$ is a polarised K3 surface of degree $(H \mid S)^{2}=2 g-2$.

Background

We work over \mathbb{C}.

Definition

K3 surface is a smooth projective surface with $H^{1}\left(S, \mathcal{O}_{S}\right)=0$ and $K_{S} \sim \mathcal{O}_{S}$.

K3 surfaces S with additional structure are usually related to Fano geometry ($-K_{X}$ ample). These include

- Anti-canonical sections of Fano 3-fold. For example, X is a prime Fano 3-fold with $-K_{X} \sim r H$ and $S \in\left|-K_{X}\right|$ general, then $\left(S,\left.H\right|_{S}\right)$ is a polarised K 3 surface of degree $(H \mid S)^{2}=2 g-2$.
- Double cover of del pezzo surface. Let X be a del pezzo surface of degree $d=\left(-K_{X}\right)^{2}$ and

$$
\varphi: S \rightarrow X
$$

double cover branched along a curve $C \in\left|-2 K_{X}\right|$. Then $(S, \tau: S \rightarrow S)$ is a K 3 surface with anti-symplectic involution.

Background

The moduli space M of K 3 surfaces with these special structures has many compactifications \bar{M} from different perspectives:

Background

The moduli space M of K 3 surfaces with these special structures has many compactifications \bar{M} from different perspectives:

- GIT side: e.g. $\bar{M}^{G I T}=\left|-K_{X}\right| / / \operatorname{Aut}(X)$

Background

The moduli space M of $K 3$ surfaces with these special structures has many compactifications \bar{M} from different perspectives:

- GIT side: e.g. $\bar{M}^{G I T}=\left|-K_{X}\right| / / \operatorname{Aut}(X)$
- Hodge theoretic side. Via Torelli theorem,

$$
M \hookrightarrow \mathcal{F}_{\Lambda}:=\Gamma_{\Lambda} \backslash \mathcal{D}_{\Lambda}
$$

for lattice Λ of signature $(2, n)$ and Γ_{Λ} monodromy group. Then M has Baily-Borel compactification $\mathcal{F}_{\Lambda}^{*}$. For example, $S \in\left|-K_{X}\right|$ and then $\Lambda_{g} \cong E_{8}^{2} \bigoplus U^{2} \bigoplus\langle 2-2 g\rangle$ and \mathcal{F}_{g}^{*}.

Background

The moduli space M of K3 surfaces with these special structures has many compactifications \bar{M} from different perspectives:

- GIT side: e.g. $\bar{M}^{G I T}=\left|-K_{X}\right| / / \operatorname{Aut}(X)$
- Hodge theoretic side. Via Torelli theorem,

$$
M \hookrightarrow \mathcal{F}_{\Lambda}:=\Gamma_{\Lambda} \backslash \mathcal{D}_{\Lambda}
$$

for lattice Λ of signature $(2, n)$ and Γ_{Λ} monodromy group. Then M has Baily-Borel compactification $\mathcal{F}_{\Lambda}^{*}$. For example, $S \in\left|-K_{X}\right|$ and then $\Lambda_{g} \cong E_{8}^{2} \bigoplus U^{2} \bigoplus\langle 2-2 g\rangle$ and \mathcal{F}_{g}^{*}.

- K-moduli side: $P_{c}^{K}=\{(X, c S) \mid K$-polystable pairs $\}$.

Background

Question: How to compare these compactifications of M ?

Background

Question: How to compare these compactifications of M ?

- X_{u} in his survey article also asks how to compare the K-moduli of prime Fano 3-folds and compactifications of polarised K3 surfaces of degree $2 g-2$.

Background

Question: How to compare these compactifications of M ?

- X_{u} in his survey article also asks how to compare the K-moduli of prime Fano 3-folds and compactifications of polarised K3 surfaces of degree $2 g-2$.
- A general expectation is that K-moduli wall-crossing will give an explicit resolution of the birational period map

$$
p: \bar{M}^{G I T} \longrightarrow \mathcal{F}_{\Lambda}^{*}
$$

Known exmples

- Ascher-DeVleming-Liu 2019:

$$
\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right| / / P G L(6) \rightarrow \mathcal{F}_{2}^{*}
$$

Known exmples

- Ascher-DeVleming-Liu 2019:

$$
\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right| / / P G L(6)--\mathcal{F}_{2}^{*}
$$

- Laza-O'Grady 2018,Ascher-DeVleming-Liu 2019 via VGIT:

$$
\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(4,4)\right| / / P G L(2) \times P G L(2) \rightarrow \mathcal{F}^{*}
$$

where \mathcal{F} is locally symmetric variety associated to lattice $U^{2} \oplus D_{16}$.

Known exmples

- Ascher-DeVleming-Liu 2019:

$$
\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right| / / P G L(6) \rightarrow \mathcal{F}_{2}^{*}
$$

- Laza-O'Grady 2018,Ascher-DeVleming-Liu 2019 via VGIT:

$$
\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(4,4)\right| / / P G L(2) \times P G L(2) \longrightarrow \mathcal{F}^{*}
$$

where \mathcal{F} is locally symmetric variety associated to lattice $U^{2} \oplus D_{16}$.

- Laza-O'Grady 2016,Ascher-DeVleming-Liu 2022:

$$
\left|\mathcal{O}_{\mathbb{P}^{3}}(4)\right| / / P G L(4) \rightarrow \mathcal{F}_{3}^{*}
$$

Known exmples

- Ascher-DeVleming-Liu 2019:

$$
\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right| / / P G L(6) \rightarrow \mathcal{F}_{2}^{*}
$$

- Laza-O'Grady 2018,Ascher-DeVleming-Liu 2019 via VGIT:

$$
\left|\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(4,4)\right| / / P G L(2) \times P G L(2) \longrightarrow \mathcal{F}^{*}
$$

where \mathcal{F} is locally symmetric variety associated to lattice $U^{2} \oplus D_{16}$.

- Laza-O'Grady 2016,Ascher-DeVleming-Liu 2022:

$$
\left|\mathcal{O}_{\mathbb{P}^{3}}(4)\right| / / P G L(4) \rightarrow \mathcal{F}_{3}^{*}
$$

In this talk, we focus on another example: Double cover $X \rightarrow \mathbb{F}_{1} \cong B I_{p} \mathbb{P}^{2}$.

K-stability

Definition

A log Fano pair (X, D) is K -semistable if

$$
\beta_{(X, D)}(E):=A_{(X, D)}(E)-S_{(X, D)}(E) \geq 0
$$

for any prime divisor E over X.

K-stability

Definition

A log Fano pair (X, D) is K -semistable if

$$
\beta_{(X, D)}(E):=A_{(X, D)}(E)-S_{(X, D)}(E) \geq 0
$$

for any prime divisor E over X.
If the pair (X, D) is of complexity one, then

Theorem (Zhuang, Ilten-Suss, ACC+)

Let (X, D) be a 2-dimensional log Fano pair with an effective \mathbb{G}_{m}-action λ. Then (X, D) is K-polystable if and only if the followings hold:
(1) $\beta_{(X, D)}(F)>0$ for all vertical λ-invariant prime divisors F on X;
(2) $\beta_{(X, D)}(F)=0$ for all horizontal λ-invariant prime divisors F on X;
(8) $\beta_{(X, D)}(v)=0$ for the valuation v induced by the 1-PS λ.

K-moduli

By many people's work, the moduli stack of K-semistable log Fano pairs $(X, c D)$ has good moduli space

$$
P_{c}^{K}=\{(X, c D) \mid K \text {-polystable pairs }\}
$$

where $D \sim-m K_{X}$ and X is \mathbb{Q}-Fano. In this talk, we consider $m=2$.

K-moduli

By many people's work, the moduli stack of K-semistable log Fano pairs $(X, c D)$ has good moduli space

$$
P_{c}^{K}=\{(X, c D) \mid K \text {-polystable pairs }\}
$$

where $D \sim-m K_{X}$ and X is \mathbb{Q}-Fano. In this talk, we consider $m=2$.

Theorem (Ascher-DeVleming-Liu- 2019)

There are finitely many rational numbers (i.e., walls)
$0<w_{1}<\cdots<w_{m}<\frac{1}{2}$ such that

$$
\bar{P}_{c}^{K} \cong \bar{P}_{c^{\prime}}^{K} \text { for any } w_{i}<c, c^{\prime}<w_{i+1} \text { and any } 1 \leq i \leq m-1 .
$$

Denote $\bar{P}_{\left(w_{i}, w_{i+1}\right)}^{K}:=\bar{P}_{c}^{K}$ for some $c \in\left(w_{i}, w_{i+1}\right)$, then at each wall w_{i} there is a flip (or divisorial contraction)

$$
\bar{P}_{\left(w_{i-1}, w_{i}\right)}^{K} \longrightarrow \bar{P}_{w_{i}}^{K} \longleftarrow \bar{P}_{\left(w_{i}, w_{i+1}\right)}^{K}
$$

which fits into a local VGIT.

Locally symmetric varieties \mathcal{F} associated to degree $8 \log$ Fano pairs
Generically, $X \rightarrow \mathbb{F}_{1} \cong B I_{p} \mathbb{P}^{2}$ has following Neron-Severi group

$$
N S(X)=\left(\begin{array}{c|cc}
& L & E \\
\hline L & 2 & 0 \\
E & 0 & -2
\end{array}\right)
$$

$\Lambda:=U^{2} \oplus E_{7} \oplus E_{8} \oplus A_{1} \cong\left(N S(X) \hookrightarrow H^{2}(X, \mathbb{Z})\right)^{\perp}$. Define

$$
\mathcal{D}:=\left\{z \in \mathbb{P}(\Lambda \otimes \mathbb{C}) \mid z^{2}=0, z \cdot \bar{z}>0\right\}^{+}, \quad \Gamma:=O^{+}(\Lambda)
$$

Locally symmetric varieties \mathcal{F} associated to degree $8 \log$ Fano pairs
Generically, $X \rightarrow \mathbb{F}_{1} \cong B I_{p} \mathbb{P}^{2}$ has following Neron-Severi group

$$
N S(X)=\left(\begin{array}{c|cc}
& L & E \\
\hline L & 2 & 0 \\
E & 0 & -2
\end{array}\right)
$$

$\Lambda:=U^{2} \oplus E_{7} \oplus E_{8} \oplus A_{1} \cong\left(N S(X) \hookrightarrow H^{2}(X, \mathbb{Z})\right)^{\perp}$. Define

$$
\mathcal{D}:=\left\{z \in \mathbb{P}(\Lambda \otimes \mathbb{C}) \mid z^{2}=0, z \cdot \bar{z}>0\right\}^{+}, \quad \Gamma:=O^{+}(\Lambda)
$$

- $\mathcal{F}:=\Gamma \backslash \mathcal{D}$ is a locally symmetric varieties of orthogonal type. $\operatorname{dim} \mathcal{F}=18$ since Λ has signature $(2,18)$.

Locally symmetric varieties \mathcal{F} associated to degree $8 \log$ Fano pairs
Generically, $X \rightarrow \mathbb{F}_{1} \cong B I_{p} \mathbb{P}^{2}$ has following Neron-Severi group

$$
N S(X)=\left(\begin{array}{c|cc}
& L & E \\
\hline L & 2 & 0 \\
E & 0 & -2
\end{array}\right)
$$

$\Lambda:=U^{2} \oplus E_{7} \oplus E_{8} \oplus A_{1} \cong\left(N S(X) \hookrightarrow H^{2}(X, \mathbb{Z})\right)^{\perp}$. Define

$$
\mathcal{D}:=\left\{z \in \mathbb{P}(\Lambda \otimes \mathbb{C}) \mid z^{2}=0, z \cdot \bar{z}>0\right\}^{+}, \quad \Gamma:=O^{+}(\Lambda)
$$

- $\mathcal{F}:=\Gamma \backslash \mathcal{D}$ is a locally symmetric varieties of orthogonal type. $\operatorname{dim} \mathcal{F}=18$ since Λ has signature $(2,18)$.
- \mathcal{F} has Baily-Borel compactification \mathcal{F}^{*}

$$
\mathcal{F}^{*}-\mathcal{F}=\bigcup B_{I}
$$

Moduli of del pezzo pair of degree 8

Let P be the moduli space parametrizing pairs $\left(\mathbb{F}_{1}, C\right)$ where $C \in\left|-2 K_{\mathbb{F}_{1}}\right|$ is a smooth curve. Then P is not proper.

Moduli of del pezzo pair of degree 8

Let P be the moduli space parametrizing pairs $\left(\mathbb{F}_{1}, C\right)$ where
$C \in\left|-2 K_{\mathbb{F}_{1}}\right|$ is a smooth curve. Then P is not proper.

- $C \in\left|-2 K_{\mathbb{F}_{1}}\right|$ can be viewed as $C=\pi^{*} D-2 E$ where $D \subset \mathbb{P}^{2}$

$$
D=\left\{z^{4} f_{2}(x, y)+z^{3} f_{3}(x, y)+\cdots+f_{6}(x, y)=0\right\}
$$

Assume $f_{2}(x, y)$ has rank 2 , then curve D has the form

$$
a z^{4} x y+z^{3} \widetilde{f}_{3}(x, y)+z^{2} f_{4}(x, y)+z f_{5}(x, y)+f_{6}(x, y)=0
$$

Let $\mathbb{P} V$ be the parameter space of such D and then GIT space $\mathbb{P} V / / T$ provides a partial compactification for P.

Moduli of del pezzo pair of degree 8

Let P be the moduli space parametrizing pairs $\left(\mathbb{F}_{1}, C\right)$ where
$C \in\left|-2 K_{\mathbb{F}_{1}}\right|$ is a smooth curve. Then P is not proper.

- $C \in\left|-2 K_{\mathbb{F}_{1}}\right|$ can be viewed as $C=\pi^{*} D-2 E$ where $D \subset \mathbb{P}^{2}$

$$
D=\left\{z^{4} f_{2}(x, y)+z^{3} f_{3}(x, y)+\cdots+f_{6}(x, y)=0\right\}
$$

Assume $f_{2}(x, y)$ has rank 2 , then curve D has the form

$$
a z^{4} x y+z^{3} \widetilde{f}_{3}(x, y)+z^{2} f_{4}(x, y)+z f_{5}(x, y)+f_{6}(x, y)=0
$$

Let $\mathbb{P} V$ be the parameter space of such D and then GIT space $\mathbb{P} V / / T$ provides a partial compactification for P.

- Via a period point of K3 surfaces, there is open immersion

$$
P \hookrightarrow \mathcal{F},\left[\left(\mathbb{F}_{1}, C\right)\right] \mapsto H^{2,0}\left(S_{C}\right) \quad \bmod \Gamma
$$

Moduli of del pezzo pair of degree 8

Let P be the moduli space parametrizing pairs $\left(\mathbb{F}_{1}, C\right)$ where
$C \in\left|-2 K_{\mathbb{F}_{1}}\right|$ is a smooth curve. Then P is not proper.

- $C \in\left|-2 K_{\mathbb{F}_{1}}\right|$ can be viewed as $C=\pi^{*} D-2 E$ where $D \subset \mathbb{P}^{2}$

$$
D=\left\{z^{4} f_{2}(x, y)+z^{3} f_{3}(x, y)+\cdots+f_{6}(x, y)=0\right\}
$$

Assume $f_{2}(x, y)$ has rank 2 , then curve D has the form

$$
a z^{4} x y+z^{3} \widetilde{f}_{3}(x, y)+z^{2} f_{4}(x, y)+z f_{5}(x, y)+f_{6}(x, y)=0
$$

Let $\mathbb{P} V$ be the parameter space of such D and then GIT space $\mathbb{P} V / / T$ provides a partial compactification for P.

- Via a period point of K3 surfaces, there is open immersion

$$
P \hookrightarrow \mathcal{F},\left[\left(\mathbb{F}_{1}, C\right)\right] \mapsto H^{2,0}\left(S_{C}\right) \quad \bmod \Gamma
$$

- P has (at least partially) a series of compactifications P_{c}^{K} via viewed as a log Fano pair $\left(\mathbb{F}_{1}, c C\right)$.

Two divisors \mathcal{F}_{Λ}

- Hyperelliptic divisor H_{h} : a general element in H_{h} is X as a double of $B l_{p} \mathbb{P}^{2}$ branched along a general curve $C \in\left|-2 K_{B l_{p} \mathbb{P}^{2}}\right|$ tangent the (-1)-curve E.

$$
N S(X)=\left(\begin{array}{c|ccc}
& L & E_{1} & E_{2} \\
\hline L & 2 & 0 & 0 \\
E_{1} & 0 & -2 & 1 \\
E_{2} & 0 & 1 & -2
\end{array}\right)
$$

Two divisors \mathcal{F}_{Λ}

- Hyperelliptic divisor H_{h} : a general element in H_{h} is X as a double of $B l_{p} \mathbb{P}^{2}$ branched along a general curve $C \in\left|-2 K_{B l_{p} \mathbb{P}^{2}}\right|$ tangent the (-1)-curve E.

$$
N S(X)=\left(\begin{array}{c|ccc}
& L & E_{1} & E_{2} \\
\hline L & 2 & 0 & 0 \\
E_{1} & 0 & -2 & 1 \\
E_{2} & 0 & 1 & -2
\end{array}\right)
$$

- Unigonal divisor H_{u} : a general element in H_{u} is X as a double of minimal resolution $B I_{p} \mathbb{P}(1,1,4)$.

$$
N S(X)=\left(\begin{array}{c|ccc}
& E^{\prime} & F^{\prime} & H_{y}^{\prime} \\
\hline E^{\prime} & -2 & 0 & 2 \\
F^{\prime} & 0 & -2 & 1 \\
H_{y}^{\prime} & 2 & 1 & -2
\end{array}\right)
$$

Main results 1

Theorem (Pan-Si-Wu, 2023)

(1) The walls for K-moduli space P_{c}^{K} are

$$
\begin{aligned}
& W_{h}=\left\{\frac{1}{14}, \frac{5}{58}, \frac{1}{10}, \frac{7}{62}, \frac{1}{8}, \frac{5}{34}, \frac{1}{6}, \frac{7}{38}, \frac{1}{5}, \frac{5}{22}, \frac{2}{7}\right\} \\
& W_{u}=\left\{\frac{29}{106}, \frac{31}{110}, \frac{2}{7}, \frac{35}{118}\right\}
\end{aligned}
$$

(2) If $c \in\left(0, \frac{1}{14}\right), \mathrm{P}_{c}^{K}$ is empty. If $c \in\left[\frac{1}{14}, \frac{5}{58}\right)$,

$$
\mathrm{P}_{c}^{K} \cong \mathbb{P} V / / T
$$

Main results 1, continued

Theorem (Pan-Si-Wu,2023)

(1) There are two divisorial contraction morphism $\mathrm{P}_{w+\epsilon}^{K} \rightarrow \mathrm{P}_{w}^{K}$ at wall $w=\frac{5}{58}$ and $w=\frac{29}{106}$. The exceptional divisors E_{w}^{+}is birational to hyperelliptic divisor H_{h} (resp. unigonal divisor H_{u}).

Main results 1, continued

Theorem (Pan-Si-Wu,2023)

(1) There are two divisorial contraction morphism $\mathrm{P}_{w+\epsilon}^{K} \rightarrow \mathrm{P}_{w}^{K}$ at wall $w=\frac{5}{58}$ and $w=\frac{29}{106}$. The exceptional divisors E_{w}^{+}is birational to hyperelliptic divisor H_{h} (resp. unigonal divisor H_{u}).
(2) There is arithmetic stratification

$$
\cdots \subset N L_{h, A_{3}} \subset N L_{h, A_{2}} \subset H_{h}
$$

of Noether-Lefschetz locus on H_{h}, which are proper transform of E_{w}^{+} for $w \in W_{h}$. Similar arithmetic stratification on H_{u} and the strata are birational to E_{w}^{+}for $w \in W_{u}$.

Table for K-wall

wall	curve B on \mathbb{P}^{2}	weight	curve singularity at p
$\frac{1}{14}$	$x^{4} z y=0$	$(1,0,0)$	A_{1}
$\frac{5}{58}$	$x^{4} z^{2}+x^{3} y^{3}=0$	$(0,2,3)$	A_{2}
$\frac{1}{10}$	$x^{4} z^{2}+x^{3} z y^{2}+a \cdot x^{2} y^{4}=0$	$(0,1,2)$	A_{3}
$\frac{7}{62}$	$x^{4} z^{2}+x y^{5}=0$	$(0,2,5)$	A_{4}
$\frac{1}{8}$	$x^{4} z^{2}+x^{2} z y^{3}+a \cdot y^{6}=0$,	$(0,1,3)$	A_{5} tangent to L_{z}
	$x^{3} f_{3}(z, y)=0$	$(0,1,1)$	D_{4}
$\frac{5}{34}$	$x^{4} z^{2}+x z y^{4}=0$	$(0,1,4)$	A_{7} with a line
	$x^{3} z^{2} y+x^{2} y^{4}=0$	$(0,2,3)$	D_{5}
$\frac{1}{6}$	$x^{4} z^{2}+z y^{5}=0$	$(0,1,5)$	A_{9} with a line
	$x^{3} z^{2} y+x^{2} z y^{3}+a \cdot x y^{5}=0$	$(0,1,2)$	D_{6}

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_{1}=B \|_{[1,0,0]} \mathbb{P}^{2}$

Table for K-wall

wall	curve B on \mathbb{P}^{2}	weight	curve singularity at p
$\frac{7}{38}$	$x^{3} z^{2} y+y^{6}=0$	$(0,2,5)$	D_{7} tangent to L_{z}
	$x^{3} z^{3}+x^{2} y^{4}=0$	$(0,3,4)$	E_{6}
$\frac{1}{5}$	$x^{3} z^{2} y+x z y^{4}=0$	$(0,1,3)$	D_{8} with L_{z}
$\frac{5}{22}$	$x^{3} z^{2} y+z y^{5}=0$	$(0,1,4)$	D_{10} with L_{z}
	$x^{3} z^{3}+x^{2} z y^{3}=0$	$(0,2,3)$	E_{7}
$\frac{2}{7}$	$x^{3} z^{3}+x y^{5}=0$	$(0,3,5)$	E_{8}

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_{1}=B l_{[1,0,0]} \mathbb{P}^{2}$

Table for K-wall

wall	curve B on \mathbb{P}^{2}	weight	curve singularity at p
$\frac{7}{38}$	$x^{3} z^{2} y+y^{6}=0$	$(0,2,5)$	D_{7} tangent to L_{z}
	$x^{3} z^{3}+x^{2} y^{4}=0$	$(0,3,4)$	E_{6}
$\frac{1}{5}$	$x^{3} z^{2} y+x z y^{4}=0$	$(0,1,3)$	D_{8} with L_{z}
$\frac{5}{22}$	$x^{3} z^{2} y+z y^{5}=0$	$(0,1,4)$	D_{10} with L_{z}
	$x^{3} z^{3}+x^{2} z y^{3}=0$	$(0,2,3)$	E_{7}
$\frac{2}{7}$	$x^{3} z^{3}+x y^{5}=0$	$(0,3,5)$	E_{8}

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_{1}=B\left[_{[1,0,0]} \mathbb{P}^{2}\right.$

wall	curve B on $\mathbb{P}(1,1,4)$	weight	(a, b, m)
$\frac{29}{106}$	$z^{3}+z^{2} x^{4}=0$	$(1,0,4)$	$(0,1,0)$
$\frac{31}{110}$	$z^{3}+z y x^{7}=0$	$(2,0,7)$	$(1,1,1)$
$\frac{2}{7}$	$z^{3}+y^{2} x^{10}=0$	$(3,0,10)$	$(2,1,2)$
$\frac{35}{118}$	$z^{3}+z y^{2} x^{6}+y^{3} x^{9}=0$	$(1,0,3)$	$(1,0,1)$

Table: K-moduli walls from index 2 del Pezzo $B l_{[1,0,0]} \mathbb{P}(1,1,4)$

Main results 2

Define the Hasset-Keel-Looijenga (HKL) model for \mathcal{F}^{*}

$$
\mathcal{F}(s):=\operatorname{Proj}\left(\bigoplus_{m} H^{0}\left(\mathcal{F}^{*}, m\left(\lambda+s H_{h}+25 s H_{u}\right)\right)\right.
$$

Main results 2

Define the Hasset-Keel-Looijenga (HKL) model for \mathcal{F}^{*}

$$
\mathcal{F}(s):=\operatorname{Proj}\left(\bigoplus_{m} H^{0}\left(\mathcal{F}^{*}, m\left(\lambda+s H_{h}+25 s H_{u}\right)\right)\right.
$$

Such type space is introduced first by Laza-O'Grady in 2016, trying to give the resolution of birational period map $\left|\mathcal{O}_{\mathbb{P}^{3}}(4)\right| / / P G L(4) \rightarrow \mathcal{F}_{3}^{*}$.

Main results 2

Define the Hasset-Keel-Looijenga (HKL) model for \mathcal{F}^{*}

$$
\mathcal{F}(s):=\operatorname{Proj}\left(\bigoplus_{m} H^{0}\left(\mathcal{F}^{*}, m\left(\lambda+s H_{h}+25 s H_{u}\right)\right)\right.
$$

Such type space is introduced first by Laza-O'Grady in 2016, trying to give the resolution of birational period map $\left|\mathcal{O}_{\mathbb{P}^{3}}(4)\right| / / P G L(4) \rightarrow \mathcal{F}_{3}^{*}$.

Theorem (Pan-Si-Wu,2023)

There is natural isomorphism $P_{c}^{K} \cong \mathcal{F}(s)$ induced by the period map under the transformation

$$
s=s(c)=\frac{1-2 c}{56 c-4}
$$

where $\frac{1}{14}<c<\frac{1}{2}$. In particular, P_{c}^{K} will interpolates the GIT space $\bar{P}^{G I T}$ and Baily-Borel compactification \mathcal{F}^{*}. In particular, walls are $w=\frac{1}{n}$ and

$$
n \in\{1,2,3,4,6,8,10,12,16,25,27,28,31\}
$$

Sketch of proof of main results 1

- Step1: To determine K-semistable degeneration. $(X, c D)$ has T-singularities at worst.

$$
\frac{32}{9}(1-2 c)^{2} \leq \widehat{\operatorname{vol}}(X, c D ; x)
$$

Combining index 1 covering trick, ind $\left(K_{X}, x\right) \leq 3$.
By Nakayama, Fujita-Yasutake's classification results of index ≤ 3 del pezzo surface, we rule out index 3 case by showing they are K-unstable. index ≤ 2 case:

$$
B I_{p} \mathbb{P}^{2}, \quad B l_{p} \mathbb{P}(1,1,4)
$$

Sketch of proof of main results 1

- Step1: To determine K-semistable degeneration. $(X, c D)$ has T-singularities at worst.

$$
\frac{32}{9}(1-2 c)^{2} \leq \widehat{\operatorname{vol}}(X, c D ; x)
$$

Combining index 1 covering trick, ind $\left(K_{X}, x\right) \leq 3$.
By Nakayama, Fujita-Yasutake's classification results of index ≤ 3 del pezzo surface, we rule out index 3 case by showing they are K-unstable. index ≤ 2 case:

$$
B l_{p} \mathbb{P}^{2}, \quad B l_{p} \mathbb{P}(1,1,4)
$$

- Step2: Local VGIT structure of K-moduli implies if $\left(B I_{p} \mathbb{P}^{2}, C\right)$ or $\left(B l_{p} \mathbb{P}(1,1,4), C\right)$ in the center, then it admits 1-PS λ and thus Fut $(\lambda)=\beta(F)$ where F is an exceptional divisor of certain weighted blowup determined by λ.
- Step2 continued: For example, for some λ,

$$
A_{(X, c C)}(F)=a+b-m c, \quad S_{(X, c C)}(F)=\frac{106 b+83 a}{48}(1-2 c)
$$

Then $A_{(X, c C)}(F)=S_{(X, c C)}$ will give us all potential walls. Then using equivariant K-stability criterion to determine which potential wall is a real wall.

- Step3: To determine the 1st walls and then keep track of wall crossing at all centers for each walls. Following the arguments of Liu- $X u$, show for c small and any K-degeneration $\left(X_{0}, c C_{0}\right)$ of $\left(B l_{p} \mathbb{P}^{2}, c C\right), X_{0}$ is still $B l_{p} \mathbb{P}^{2}$, then can show

$$
\mathrm{P}_{c}^{K} \cong \mathbb{P} V / / T
$$

Then explicit wall-crossing are followed by analysis of local VGIT at each wall $w \in W_{u} \cup W_{h}$.

Sketch of proof of main results 2

- step 1: By ampleness of CM line bundle and birational contraction map

$$
\bar{P}_{\frac{1}{2}-\epsilon}^{K} \rightarrow \bar{P}_{c}^{K},
$$

Then $\bar{P}_{c}^{K} \cong \operatorname{Proj}\left(R\left(\bar{P}_{\frac{1}{2}-\epsilon}^{K}, \lambda_{\frac{1}{2}-\epsilon, c}\right)\right.$ where

$$
\lambda_{\frac{1}{2}-\epsilon, c}:=\pi_{*}\left(-K_{\mathfrak{X}}+c \mathcal{C}\right)^{3}
$$

where $(\mathfrak{X}, \mathcal{C})$ is universal family of pairs on $\bar{P}_{\frac{1}{2}-\epsilon}^{K}$.
Then enough to show $\left(p^{-1}\right)^{*} \lambda_{\frac{1}{2}-\epsilon, c}$ on \mathcal{F}^{*} is proportional to

$$
\lambda+\frac{1-2 c}{56 c-4}\left(H_{h}+25 H_{u}\right)
$$

where $p: \bar{P}_{\frac{1}{2}-\epsilon}^{K} \longrightarrow \mathcal{F}^{*}$ birational period map.

- step 2: Applying interpolation formula of CM line bundles

$$
\begin{gathered}
(1-2 c)^{-2} \cdot \lambda_{\frac{1}{2}-\epsilon, c}=(1-2 c) \cdot \lambda_{\frac{1}{2}-\epsilon, 0}+48 c \cdot \lambda_{\frac{1}{2}-\epsilon, H d g} . \\
p^{-1 *} \lambda_{\frac{1}{2}-\epsilon, H d g}=\lambda \text { and it remains to determine } \\
p^{-1 *} \lambda_{\frac{1}{2}-\epsilon, 0}=a_{h} H_{h}+a_{u} H_{u}+a_{\lambda} \lambda, a_{u}, a_{h}, a_{\lambda} \in \mathbb{Q}
\end{gathered}
$$

- step 2: Applying interpolation formula of CM line bundles

$$
(1-2 c)^{-2} \cdot \lambda_{\frac{1}{2}-\epsilon, c}=(1-2 c) \cdot \lambda_{\frac{1}{2}-\epsilon, 0}+48 c \cdot \lambda_{\frac{1}{2}-\epsilon, H d g} .
$$

$p^{-1 *} \lambda_{\frac{1}{2}-\epsilon, H d g}=\lambda$ and it remains to determine

$$
p^{-1 *} \lambda_{\frac{1}{2}-\epsilon, 0}=a_{h} H_{h}+a_{u} H_{u}+a_{\lambda} \lambda, a_{u}, a_{h}, a_{\lambda} \in \mathbb{Q}
$$

- step 3: The coefficient $a_{u}, a_{h}, a_{\lambda} \in \mathbb{Q}$ are determined by walls

$$
\frac{1}{14}, \frac{5}{58}, \frac{29}{106} .
$$

Denote the \mathbb{Q}-line bundle

$$
\Delta(c):=48 c \lambda+(1-2 c) \cdot\left(a_{h} H_{h}+a_{u} H_{u}+a_{\lambda} \lambda\right)
$$

Then any multiple of $\Delta(c)$ has no global sections at wall $\frac{1}{14}$. This shows $a_{\lambda}=-4$.

- step 3, continued: at wall $\frac{5}{58}$ where hyperellitpic divisor appears, $\left.\Delta\left(\frac{5}{58}\right)\right|_{H_{h}}=0$.
This shows $a_{h}=1$. Similar arguments will show $a_{u}=25$.
A key input is that the computation

$$
\left.\left(\lambda+H_{u}\right)\right|_{H_{u}}=0,\left.\quad\left(\lambda+H_{h}\right)\right|_{H_{h}}=0
$$

via Borcherds' work automorphic forms on locally symmetric varieity \mathcal{F}, which gives the relation of Heegner divisors on \mathcal{F}. In our case,

$$
76 \lambda=H_{n}+2 H_{h}+57 H_{u} .
$$

Some remarks:

- For higher dimensional log Fano pairs, to find walls of their K-moduli seems much harder than dimension 2. The arithmetic stratifications should be powerful to predict walls for K-moduli of \log Fanos related to K3 surfaces (even irreducible holomorphic symplectic varieties).

Some remarks:

- For higher dimensional log Fano pairs, to find walls of their K-moduli seems much harder than dimension 2. The arithmetic stratifications should be powerful to predict walls for K-moduli of log Fanos related to K3 surfaces (even irreducible holomorphic symplectic varieties).
- It should be interesting to look at the behavior of $c>\frac{1}{2}$ and $c=\frac{1}{2}$. For $c>\frac{1}{2}$, by Alexeev-Engel-Han's work, the KSBA moduli space compactifying pairs $\left(B l_{p} \mathbb{P}^{2}, c C\right)$ and their slc degeneration has a natural normalization- Toroidal compactification of \mathcal{F}. For $c=\frac{1}{2}$, it is expected to have a moduli theory for $\log \mathrm{CY}$ to connect wall crossing from K-moduli to KSBA moduli.

Thank you for your attention!

