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Background

We work over C.

Definition

K3 surface is a smooth projective surface with H'(S, Os) = 0 and
Ks ~ Os.
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Background

We work over C.

Definition

K3 surface is a smooth projective surface with H'(S, Os) = 0 and
Ks ~ Os.

K3 surfaces S with additional structure are usually related to Fano
geometry (—Kx ample ). These include
@ Anti-canonical sections of Fano 3-fold. For example, X is a prime
Fano 3-fold with —Kx ~ rH and S € | — Kx| general, then (S, H|s)
is a polarised K3 surface of degree (H|s)?> = 2g — 2.
@ Double cover of del pezzo surface. Let X be a del pezzo surface of
degree d = (—Kx)? and
p:S—=>X

double cover branched along a curve C € | — 2Kx|. Then
(S,7:S5 — S) is a K3 surface with anti-symplectic involution.
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Background

The moduli space M of K3 surfaces with these special structures has many
compactifications M from different perspectives:
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The moduli space M of K3 surfaces with these special structures has many
compactifications M from different perspectives:

o GIT side: e.g. MY =| — Kx|/Aut(X)

@ Hodge theoretic side. Via Torelli theorem,
M — Fp:=Tq \ Da

for lattice A of signature (2, n) and 'y monodromy group. Then M
has Baily-Borel compactification F5. For example, S € | — Kx| and
then Ag = E3 P U> @ (2 — 2g) and F;.
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The moduli space M of K3 surfaces with these special structures has many
compactifications M from different perspectives:

o GIT side: e.g. MY =| — Kx|/Aut(X)

@ Hodge theoretic side. Via Torelli theorem,
M — Fp:=Tq \ Da

for lattice A of signature (2, n) and 'y monodromy group. Then M
has Baily-Borel compactification F5. For example, S € | — Kx| and
then Ag = E3 P U> @ (2 — 2g) and F;.

o K-moduli side: PX = {(X,cS) | K-polystable pairs}.

c
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Background

Question: How to compare these compactifications of M ?

@ Xu in his survey article also asks how to compare the K-moduli of
prime Fano 3-folds and compactifications of polarised K3 surfaces of
degree 2g — 2.

o A general expectation is that K-moduli wall-crossing will give an
explicit resolution of the birational period map

—GIT "
p: M -=> .F/\
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Known exmples

@ Ascher-DeVleming-Liu 20109:

|Op2(6)| ) PGL(6) --+ F>
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@ Ascher-DeVleming-Liu 20109:

|Op2(6)| ) PGL(6) --+ F>

o Laza-O'Grady 2018,Ascher-DeVleming-Liu 2019 via VGIT:
|Op1yp1(4,4)| ) PGL(2) x PGL(2) --+ F*

where F is locally symmetric variety associated to lattice U? & Dig.
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Known exmples

@ Ascher-DeVleming-Liu 2019:

|Op2(6)| ) PGL(6) --+ F>

o Laza-O'Grady 2018,Ascher-DeVleming-Liu 2019 via VGIT:
|Op1yp1(4,4)| ) PGL(2) x PGL(2) --+ F*

where F is locally symmetric variety associated to lattice U? & Dig.
@ Laza-O'Grady 2016,Ascher-DeVleming-Liu 2022:

|Ops(4)| ) PGL(4) --» F3

In this talk, we focus on another example: Double cover X — F; = BlpIP’z.
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K-stability

Definition

A log Fano pair (X, D) is K-semistable if

Bix.0)(E) == Ax,p)(E) — Sx,p)(E) = 0

for any prime divisor E over X.
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K-stability

Definition

A log Fano pair (X, D) is K-semistable if

Bix.0)(E) == Ax,p)(E) — Sx,p)(E) =2 0

for any prime divisor E over X.

If the pair (X, D) is of complexity one, then

Theorem (Zhuang, llten-Suss, ACC+)

Let (X, D) be a 2-dimensional log Fano pair with an effective G ,-action
A. Then (X, D) is K-polystable if and only if the followings hold:

(1) B(X,D)(F) > 0 for all vertical A-invariant prime divisors F on X;
Q ﬂ(X,D)(F) = 0 for all horizontal A-invariant prime divisors F on X;
© Bx,p)(v) = 0 for the valuation v induced by the 1-PS \.
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K-moduli

By many people’s work, the moduli stack of K-semistable log Fano pairs
(X, cD) has good moduli space

PX = {(X,cD) | K-polystable pairs}

where D ~ —mKx and X is Q-Fano. In this talk, we consider m = 2.
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K-moduli

By many people’s work, the moduli stack of K-semistable log Fano pairs
(X, cD) has good moduli space

PX = {(X,cD) | K-polystable pairs}
where D ~ —mKx and X is Q-Fano. In this talk, we consider m = 2.
Theorem (Ascher-DeVleming-Liu- 2019)

There are finitely many rational numbers (i.e., walls )
O<m < - < Wm<%SUCh that

—K . =K .
P_ = P_ foranyw; <c,c' <wyiand any 1<i<m-1.

=K =K
Denote Py, ,.,) = P for some c € (wj, wit1), then at each wall w;
there is a flip (or divisorial contraction)

—K —K —K
P(Wi—lywi) — PWi — P(WhWH—l)

which fits into a local VGIT.
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Locally symmetric varieties F associated to degree 8 log
Fano pairs
Generically, X — F; = BI,,IP’2 has following Neron-Severi group

L E
NS(X)=| L2 0
Elo —2

AN:=U?3® E @ Eg® A; = (NS(X) — H?(X,Z))*. Define

D:={zeP(A®C)|2*=0,zz>0}", [:=0%(A)
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Locally symmetric varieties F associated to degree 8 log
Fano pairs
Generically, X — F; = BI,,IP’2 has following Neron-Severi group

L E
NS(X)=| L2 0
Elo —2

AN:=U?3® E @ Eg® A; = (NS(X) — H?(X,Z))*. Define
D:={zeP(A®C)|z>=0,2zz>0}", T:=0"(N)

e F:=TI\Dis a locally symmetric varieties of orthogonal type.
dim F = 18 since A has signature (2,18).

@ F has Baily-Borel compactification F*
F-F=JB
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Moduli of del pezzo pair of degree 8

Let P be the moduli space parametrizing pairs (IF1, C) where
C € | — 2Kp,| is a smooth curve. Then P is not proper.
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Moduli of del pezzo pair of degree 8
Let P be the moduli space parametrizing pairs (IF1, C) where
C € | — 2Kp,| is a smooth curve. Then P is not proper.

o C €| — 2Kp,| can be viewed as C = 7*D — 2E where D C IP?
D = {Z*fH(x,y) + 22h(x,y) + - + fs(x,y) = 0}.
Assume f>(x,y) has rank 2, then curve D has the form
az*xy + 22 h(x, y) + 22 fa(x, y) + 2fs(x, ) + fo(x,y) = 0

Let PV be the parameter space of such D and then GIT space
PV /T provides a partial compactification for P.
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Let PV be the parameter space of such D and then GIT space
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@ Via a period point of K3 surfaces, there is open immersion

P < F, [(F1, C)] +— H*°(S¢) mod I
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Moduli of del pezzo pair of degree 8
Let P be the moduli space parametrizing pairs (IF1, C) where
C € | — 2Kp,| is a smooth curve. Then P is not proper.

o C €| — 2Kp,| can be viewed as C = 7*D — 2E where D C IP?
D = {Z*fH(x,y) + 22h(x,y) + - + fs(x,y) = 0}.
Assume f>(x,y) has rank 2, then curve D has the form
az*xy + 22 h(x, y) + 22 fa(x, y) + 2fs(x, ) + fo(x,y) = 0

Let PV be the parameter space of such D and then GIT space
PV /T provides a partial compactification for P.

@ Via a period point of K3 surfaces, there is open immersion

P < F, [(F1, C)] +— H*°(S¢) mod I

@ P has (at least partially ) a series of compactifications PX via viewed

as a log Fano pair (IFq, cC).
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Two divisors Fp

o Hyperelliptic divisor Hy: a general element in Hy is X as a double of
BI,P? branched along a general curve C € | — 2KBIPP2| tangent the

(—1)-curve E.
=
L{2 0 O
NS(X) = EE|0 -2 1
El0 1 -2
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Two divisors Fp

o Hyperelliptic divisor Hy: a general element in Hy is X as a double of
BI,P? branched along a general curve C € | — 2KB,pP2| tangent the

(—1)-curve E.
L B B
L{2 0 O
NS(X) = EE|0 -2 1
E,]0 1 =2

@ Unigonal divisor H,: a general element in H, is X as a double of
minimal resolution Bl,P(1,1,4).

| ' F' H,
E'l-2 0 2
FFlo -2 1

Ho| 2 1 -2

NS(X) =
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Main results 1

Theorem (Pan-Si-Wu,2023)

@ The walls for K-moduli space PX are

W =l = =y == = =0 0 =0 o =y e =
29 31 2 35
Wu :{ }

106’110’ 7’ 118
Q@ Ifce(0,1;), PK isempty. If c € [, 5),

PK=pv)T
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Main results 1, continued

Theorem (Pan-Si-Wu,2023)

@ There are two divisorial contraction morphism P . — PK at wall

_ i _ & . .. + - . .
w = gg and w = {55. The exceptional divisors E,; is birational to

hyperelliptic divisor Hy( resp. unigonal divisor H, ).
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Main results 1, continued

Theorem (Pan-Si-Wu,2023)

@ There are two divisorial contraction morphism P . — PK at wall
w = % and w = 12—(;36. The exceptional divisors E;} is birational to
hyperelliptic divisor Hy( resp. unigonal divisor H, ).

@ There is arithmetic stratification
coe C NLh’A3 C NLh’A2 C H,

of Noether-Lefschetz locus on Hy,, which are proper transform of E,;
for w € W,,. Similar arithmetic stratification on H, and the strata are
birational to E} for w € W,.
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Table for K-wall

wall curve B on P? weight | curve singularity at p
= x'zy =0 (1,00 Ay
= x*22+x33 =0 (0,2,3 As
1—10 x*22 +x3zy> +a-x°y* =01 (0,1,2 Az
612 X422 + xy® =0 (0,2,5 Ay
1| X*Z22+xPzy3+a-y® =0, [ (01,3 As tangent to L,
8 x3f(z,y) =0 (0,11 Dy
5 x*z22 + xzy* =0 (0,1,4 A7 with a line
34 X322y +x2y* =0 (0,2,3 Ds
1 X222+ zy° =0 (0,1,5 Ag with a line
6 x32%y +x?zy3 +a-xy° =01 (0,1,2 Dg
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Table for K-wall

wall | curve B on P?> | weight | curve singularity at p
x*z%y +y° =0 |(0,2,5) D+ tangent to L,
X323+ x%y* =0 | (0,3,4) Es
x*2%y + xzy* =0 | (0,1,3) Ds with L,
x32%y + 2y =0 | (0,1,4) Do with L,
)
)

x3z3 +x%?zy> =0 | (0,2,3 E;
x*z224+xy>=0 | (03,5 Es

i Nov e 8~

Table: K-moduli walls from Gorenstein del Pezzo F; = BI[LOJ)]]P’2
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Table for K-wall

rve B on P? weight

curve singularity at p

wall cu
7 x322y +y® =0 [(0,2,5) | D;tangentto L,
38 322+ x%y* =0 | (0,3,4) Es
% x32%y + xzy* =0 | (0,1,3) Dg with L,
5 | X322y +2z°=0 | (0,1,4) Dy with L,
2 5334+ x%zy3=01(0,2,3) E;
% x*z224+xy> =0 | (0,3,5) Es

Table: K-moduli walls from Gorenstein del Pezzo F; = BI[1,070]]P2

wall

curve B on P(1,1,4)

weight | (a, b, m)

29

224+ 22x* =0

(1,0,4) | (0,1,0)

106
31

22+ zyx" =0

(2,0,7) | (1,1,1)

21X =0

(3,0,10) | (2,1,2)

—

w
\I\I\JH‘

[&] =

118

(1,0,3) | (1,0,1)

Table: K-moduli walls from index 2 del Pezzo Bl ogP(1,1,4)

Fei Si (Peking university)
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Main results 2
Define the Hasset-Keel-Looijenga (HKL) model for F*

F(s) := Proj(ED HO(F*, m(X + sHp + 25sH,,))
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Such type space is introduced first by Laza-O'Grady in 2016, trying to give
the resolution of birational period map |Op3(4)|/PGL(4) --+ F3.
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Main results 2
Define the Hasset-Keel-Looijenga (HKL) model for F*

F(s) := Proj(ED HO(F*, m(X + sHp + 25sH,,))

Such type space is introduced first by Laza-O'Grady in 2016, trying to give
the resolution of birational period map |Op3(4)|/PGL(4) --+ F3.

Theorem (Pan-Si-Wu,2023)

There is natural isomorphism PX = F(s)induced by the period map under
the transformation

1-—2c
s:S(C):56c—4

. o —=GIT
where ﬁ <c< % In particular, Pf will interpolates the GIT space P
and Baily-Borel compactification F*. In particular, walls are w = % and

ne{1,2,3,4,6,8,10,12,16,25,27,28,31 }
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Sketch of proof of main results 1

@ Stepl: To determine K-semistable degeneration. (X, cD) has

T-singularities at worst.

32 —

3(1 —2¢)? < vol(X, cD; x)
Combining index 1 covering trick, ind(Kx,x) < 3.
By Nakayama, Fujita-Yasutake's classification results of index < 3 del
pezzo surface, we rule out index 3 case by showing they are
K-unstable. index < 2 case:

BI,P?, BI,P(1,1,4).
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Sketch of proof of main results 1

@ Stepl: To determine K-semistable degeneration. (X, cD) has

T-singularities at worst.

32 —~

3(1 —2¢)? < vol(X, cD; x)
Combining index 1 covering trick, ind(Kx,x) < 3.
By Nakayama, Fujita-Yasutake's classification results of index < 3 del
pezzo surface, we rule out index 3 case by showing they are
K-unstable. index < 2 case:

BI,P?, BI,P(1,1,4).

o Step2: Local VGIT structure of K-moduli implies if (BI,P?, C) or
(BI,P(1,1,4), C) in the center, then it admits 1-PS A and thus
Fut(\) = B(F) where F is an exceptional divisor of certain weighted
blowup determined by A.
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@ Step2 continued: For example, for some A,

106b + 83a
Ax.co)(F)=a+b—mec, Sx.cc)(F)= T(l —2¢)

Then A(x.cc)(F) = S(x,cc) will give us all potential walls.
Then using equivariant K-stability criterion to determine which
potential wall is a real wall.

@ Step3: To determine the 1st walls and then keep track of wall
crossing at all centers for each walls. Following the arguments of
Liu-Xu, show for ¢ small and any K-degeneration (Xp, cCp) of
(BI,P2, cC), Xy is still B,IP?, then can show

PK~pv)T.

Then explicit wall-crossing are followed by analysis of local VGIT at
each wall w € W, U W,
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Sketch of proof of main results 2

@ step 1: By ampleness of CM line bundle and birational contraction
map
PY s PX,

2—6

Then ﬁf = Proj(R(ﬁg )\%_E’C) where

A= Tu( =Kz + cC)?

where (X,C) is universal family of pairs on ﬁg,e.

. .
c,c ON JF* is proportional to

Then enough to show (p~1)*A1_
2

i 1-2c¢
56c — 4

--+ F* birational period map.

where p : I_-"‘g_6
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@ step 2: Applying interpolation formula of CM line bundles

(1-2c)72. Miee=(1-20) A1 o +48c- AL pg-

€,C

p! AL, Hdg = A and it remains to determine
2 K

P_l *)\%—E,O - ahHh + auHu + a)\>\7 Ay, dh, A\ € Q
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@ step 2: Applying interpolation formula of CM line bundles

(1-20)72 N1 o= (1-20) Ay o +48c- A1y

€,C

ptF AL, Hdg = A and it remains to determine
2 )

Pil *)\%,E’O - ahHh + auHu + a)\>\7 Ay, dh, A\ € Q

@ step 3: The coefficient a,, ap, ay € Q are determined by walls

1 5 29
147587 106
Denote the Q-line bundle
A(c) :=48cA + (1 —2¢) - (apHp + auHu + axA)
Then any multiple of A(c) has no global sections at wall . This

shows a) = —4.
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@ step 3, continued: at wall % where hyperellitpic divisor appears,
NG
This shows a, = 1. Similar arguments will show a, = 25.
A key input is that the computation

A+ Hu)lH, =0, (A4 Hp)lH, =0

via Borcherds’ work automorphic forms on locally symmetric varieity
F, which gives the relation of Heegner divisors on F. In our case ,

76\ = H, + 2Hp +57H,,.
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Some remarks:

@ For higher dimensional log Fano pairs, to find walls of their K-moduli
seems much harder than dimension 2. The arithmetic stratifications
should be powerful to predict walls for K-moduli of log Fanos related
to K3 surfaces (even irreducible holomorphic symplectic varieties).
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Some remarks:

@ For higher dimensional log Fano pairs, to find walls of their K-moduli
seems much harder than dimension 2. The arithmetic stratifications
should be powerful to predict walls for K-moduli of log Fanos related
to K3 surfaces (even irreducible holomorphic symplectic varieties).

@ It should be interesting to look at the behavior of ¢ > % and ¢ = %
For ¢ > % by Alexeev-Engel-Han's work, the KSBA moduli space
compactifying pairs (BI,,IP’27 cC) and their slc degeneration has a
natural normalization— Toroidal compactification of F.

For c = % it is expected to have a moduli theory for log CY to
connect wall crossing from K-moduli to KSBA moduli.
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Thank you for your attention !
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