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Background

We work over C.

Definition

K3 surface is a smooth projective surface with H1(S ,OS) = 0 and
KS ∼ OS .

K3 surfaces S with additional structure are usually related to Fano
geometry (−KX ample ). These include

Anti-canonical sections of Fano 3-fold. For example, X is a prime
Fano 3-fold with −KX ∼ rH and S ∈ | − KX | general, then (S ,H|S)
is a polarised K3 surface of degree (H|S)2 = 2g − 2.

Double cover of del pezzo surface. Let X be a del pezzo surface of
degree d = (−KX )2 and

ϕ : S → X

double cover branched along a curve C ∈ | − 2KX |. Then
(S , τ : S → S) is a K3 surface with anti-symplectic involution.
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Background

The moduli space M of K3 surfaces with these special structures has many
compactifications M from different perspectives:

GIT side: e.g. M
GIT

= | − KX |//Aut(X )

Hodge theoretic side. Via Torelli theorem,

M ↪→ FΛ := ΓΛ \ DΛ

for lattice Λ of signature (2, n) and ΓΛ monodromy group. Then M
has Baily-Borel compactification F∗Λ. For example, S ∈ | − KX | and
then Λg

∼= E 2
8

⊕
U2

⊕
〈2− 2g〉 and F∗g .

K-moduli side: PK
c = {(X , cS) | K -polystable pairs}.
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Background

Question: How to compare these compactifications of M ?

Xu in his survey article also asks how to compare the K-moduli of
prime Fano 3-folds and compactifications of polarised K3 surfaces of
degree 2g − 2.

A general expectation is that K-moduli wall-crossing will give an
explicit resolution of the birational period map

p : M
GIT

99K F∗Λ

.

Fei Si (Peking university) K-moduli space 4 / 22



Background

Question: How to compare these compactifications of M ?

Xu in his survey article also asks how to compare the K-moduli of
prime Fano 3-folds and compactifications of polarised K3 surfaces of
degree 2g − 2.

A general expectation is that K-moduli wall-crossing will give an
explicit resolution of the birational period map

p : M
GIT

99K F∗Λ

.

Fei Si (Peking university) K-moduli space 4 / 22



Background

Question: How to compare these compactifications of M ?

Xu in his survey article also asks how to compare the K-moduli of
prime Fano 3-folds and compactifications of polarised K3 surfaces of
degree 2g − 2.

A general expectation is that K-moduli wall-crossing will give an
explicit resolution of the birational period map

p : M
GIT

99K F∗Λ

.

Fei Si (Peking university) K-moduli space 4 / 22



Known exmples

Ascher-DeVleming-Liu 2019:

|OP2(6)|//PGL(6) 99K F∗2

Laza-O’Grady 2018,Ascher-DeVleming-Liu 2019 via VGIT:

|OP1×P1(4, 4)|//PGL(2)× PGL(2) 99K F∗

where F is locally symmetric variety associated to lattice U2 ⊕ D16.

Laza-O’Grady 2016,Ascher-DeVleming-Liu 2022:

|OP3(4)|//PGL(4) 99K F∗3

In this talk, we focus on another example: Double cover X → F1
∼= BlpP2.
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K-stability

Definition

A log Fano pair (X ,D) is K-semistable if

β(X ,D)(E ) := A(X ,D)(E )− S(X ,D)(E ) ≥ 0

for any prime divisor E over X .

If the pair (X ,D) is of complexity one, then

Theorem (Zhuang, Ilten-Suss, ACC+)

Let (X ,D) be a 2-dimensional log Fano pair with an effective Gm-action
λ. Then (X ,D) is K-polystable if and only if the followings hold:

1 β(X ,D)(F ) > 0 for all vertical λ-invariant prime divisors F on X ;

2 β(X ,D)(F ) = 0 for all horizontal λ-invariant prime divisors F on X ;

3 β(X ,D)(v) = 0 for the valuation v induced by the 1-PS λ.
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K-moduli
By many people’s work, the moduli stack of K-semistable log Fano pairs
(X , cD) has good moduli space

PK
c = {(X , cD) | K -polystable pairs}

where D ∼ −mKX and X is Q-Fano. In this talk, we consider m = 2.

Theorem (Ascher-DeVleming-Liu- 2019)

There are finitely many rational numbers (i.e., walls )
0 < w1 < · · · < wm < 1

2 such that

P
K
c
∼= P

K
c ′ for any wi < c , c ′ < wi+1 and any 1 ≤ i ≤ m − 1.

Denote P
K
(wi ,wi+1) := P

K
c for some c ∈ (wi ,wi+1), then at each wall wi

there is a flip (or divisorial contraction)

P
K
(wi−1,wi )

−→ P
K
wi
←− P

K
(wi ,wi+1)

which fits into a local VGIT.
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Locally symmetric varieties F associated to degree 8 log
Fano pairs
Generically, X → F1

∼= BlpP2 has following Neron-Severi group

NS(X ) =

 L E

L 2 0
E 0 −2


Λ := U2 ⊕ E7 ⊕ E8 ⊕ A1

∼= (NS(X ) ↪→ H2(X ,Z))⊥. Define

D := {z ∈ P(Λ⊗ C) | z2 = 0, z .z > 0}+, Γ := O+(Λ)

F := Γ \ D is a locally symmetric varieties of orthogonal type.
dimF = 18 since Λ has signature (2, 18).

F has Baily-Borel compactification F∗

F∗ −F =
⋃

BI
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Moduli of del pezzo pair of degree 8
Let P be the moduli space parametrizing pairs (F1,C ) where
C ∈ | − 2KF1 | is a smooth curve. Then P is not proper.

C ∈ | − 2KF1 | can be viewed as C = π∗D − 2E where D ⊂ P2

D = {z4f2(x , y) + z3f3(x , y) + · · ·+ f6(x , y) = 0}.

Assume f2(x , y) has rank 2, then curve D has the form

az4xy + z3f̃3(x , y) + z2f4(x , y) + zf5(x , y) + f6(x , y) = 0

Let PV be the parameter space of such D and then GIT space
PV //T provides a partial compactification for P.

Via a period point of K3 surfaces, there is open immersion

P ↪→ F , [(F1,C )] 7→ H2,0(SC ) mod Γ

P has (at least partially ) a series of compactifications PK
c via viewed

as a log Fano pair (F1, cC ).
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Two divisors FΛ

Hyperelliptic divisor Hh: a general element in Hh is X as a double of
BlpP2 branched along a general curve C ∈ | − 2KBlpP2 | tangent the
(−1)-curve E .

NS(X ) =


L E1 E2

L 2 0 0
E1 0 −2 1
E2 0 1 −2



Unigonal divisor Hu: a general element in Hu is X as a double of
minimal resolution BlpP(1, 1, 4).

NS(X ) =


E ′ F ′ H ′y

E ′ −2 0 2
F ′ 0 −2 1
H ′y 2 1 −2


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Main results 1

Theorem (Pan-Si-Wu,2023)

1 The walls for K-moduli space PK
c are

Wh ={ 1

14
,

5

58
,

1

10
,

7

62
,

1

8
,

5

34
,

1

6
,

7

38
,

1

5
,

5

22
,

2

7
}

Wu ={ 29

106
,

31

110
,

2

7
,

35

118
}

2 If c ∈ (0, 1
14 ), PK

c is empty. If c ∈ [ 1
14 ,

5
58 ),

PK
c
∼= PV //T
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Main results 1, continued

Theorem (Pan-Si-Wu,2023)

1 There are two divisorial contraction morphism PK
w+ε → PK

w at wall
w = 5

58 and w = 29
106 . The exceptional divisors E+

w is birational to
hyperelliptic divisor Hh( resp. unigonal divisor Hu ).

2 There is arithmetic stratification

· · · ⊂ NLh,A3 ⊂ NLh,A2 ⊂ Hh

of Noether-Lefschetz locus on Hh, which are proper transform of E+
w

for w ∈Wh. Similar arithmetic stratification on Hu and the strata are
birational to E+

w for w ∈Wu.
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Table for K-wall

wall curve B on P2 weight curve singularity at p
1

14 x4zy = 0 (1,0,0) A1
5

58 x4z2 + x3y3 = 0 (0,2,3) A2
1

10 x4z2 + x3zy2 + a · x2y4 = 0 (0,1,2) A3
7

62 x4z2 + xy5 = 0 (0,2,5) A4

1
8

x4z2 + x2zy3 + a · y6 = 0, (0,1,3) A5 tangent to Lz
x3f3(z , y) = 0 (0,1,1) D4

5
34

x4z2 + xzy4 = 0 (0,1,4) A7 with a line
x3z2y + x2y4 = 0 (0,2,3) D5

1
6

x4z2 + zy5 = 0 (0,1,5) A9 with a line
x3z2y + x2zy3 + a · xy5 = 0 (0,1,2) D6

Table: K-moduli walls from Gorenstein del Pezzo F1 = Bl[1,0,0]P2
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Table for K-wall

wall curve B on P2 weight curve singularity at p

7
38

x3z2y + y6 = 0 (0,2,5) D7 tangent to Lz
x3z3 + x2y4 = 0 (0,3,4) E6

1
5 x3z2y + xzy4 = 0 (0,1,3) D8 with Lz

5
22

x3z2y + zy5 = 0 (0,1,4) D10 with Lz
x3z3 + x2zy3 = 0 (0,2,3) E7

2
7 x3z3 + xy5 = 0 (0,3,5) E8

Table: K-moduli walls from Gorenstein del Pezzo F1 = Bl[1,0,0]P2

wall curve B on P(1, 1, 4) weight (a, b,m)
29

106 z3 + z2x4 = 0 (1,0,4) (0, 1, 0)
31

110 z3 + zyx7 = 0 (2,0,7) (1, 1, 1)
2
7 z3 + y2x10 = 0 (3,0,10) (2, 1, 2)

35
118 z3 + zy2x6 + y3x9 = 0 (1,0,3) (1,0,1)

Table: K-moduli walls from index 2 del Pezzo Bl[1,0,0]P(1, 1, 4)
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Table: K-moduli walls from Gorenstein del Pezzo F1 = Bl[1,0,0]P2

wall curve B on P(1, 1, 4) weight (a, b,m)
29

106 z3 + z2x4 = 0 (1,0,4) (0, 1, 0)
31

110 z3 + zyx7 = 0 (2,0,7) (1, 1, 1)
2
7 z3 + y2x10 = 0 (3,0,10) (2, 1, 2)

35
118 z3 + zy2x6 + y3x9 = 0 (1,0,3) (1,0,1)

Table: K-moduli walls from index 2 del Pezzo Bl[1,0,0]P(1, 1, 4)
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Main results 2
Define the Hasset-Keel-Looijenga (HKL) model for F∗

F(s) := Proj(
⊕
m

H0(F∗,m(λ+ sHh + 25sHu))

Such type space is introduced first by Laza-O’Grady in 2016, trying to give
the resolution of birational period map |OP3(4)|//PGL(4) 99K F∗3 .

Theorem (Pan-Si-Wu,2023)

There is natural isomorphism PK
c
∼= F(s)induced by the period map under

the transformation

s = s(c) =
1− 2c

56c − 4

where 1
14 < c < 1

2 . In particular, PK
c will interpolates the GIT space P

GIT

and Baily-Borel compactification F∗. In particular, walls are w = 1
n and

n ∈ {1, 2, 3, 4, 6, 8, 10, 12, 16, 25, 27, 28, 31 }
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Sketch of proof of main results 1

Step1: To determine K-semistable degeneration. (X , cD) has
T -singularities at worst.

32

9
(1− 2c)2 ≤ v̂ol(X , cD; x)

Combining index 1 covering trick, ind(KX , x) ≤ 3.
By Nakayama, Fujita-Yasutake’s classification results of index ≤ 3 del
pezzo surface, we rule out index 3 case by showing they are
K-unstable. index ≤ 2 case:

BlpP2, BlpP(1, 1, 4).

Step2: Local VGIT structure of K-moduli implies if (BlpP2,C ) or
(BlpP(1, 1, 4),C ) in the center, then it admits 1-PS λ and thus
Fut(λ) = β(F ) where F is an exceptional divisor of certain weighted
blowup determined by λ.
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Step2 continued: For example, for some λ,

A(X ,cC)(F ) = a + b −mc , S(X ,cC)(F ) =
106b + 83a

48
(1− 2c)

Then A(X ,cC)(F ) = S(X ,cC) will give us all potential walls.
Then using equivariant K-stability criterion to determine which
potential wall is a real wall.

Step3: To determine the 1st walls and then keep track of wall
crossing at all centers for each walls. Following the arguments of
Liu-Xu, show for c small and any K-degeneration (X0, cC0) of
(BlpP2, cC ), X0 is still BlpP2, then can show

PK
c
∼= PV //T .

Then explicit wall-crossing are followed by analysis of local VGIT at
each wall w ∈Wu ∪Wh.
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Sketch of proof of main results 2

step 1: By ampleness of CM line bundle and birational contraction
map

P
K
1
2
−ε 99K P

K
c ,

Then P
K
c
∼= Proj(R(P

K
1
2
−ε, λ 1

2
−ε,c) where

λ 1
2
−ε,c := π∗(−KX + cC)3

where (X, C) is universal family of pairs on P
K
1
2
−ε.

Then enough to show (p−1)∗λ 1
2
−ε,c on F∗ is proportional to

λ+
1− 2c

56c − 4
(Hh + 25Hu).

where p : P
K
1
2
−ε 99K F∗ birational period map.
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step 2: Applying interpolation formula of CM line bundles

(1− 2c)−2 · λ 1
2
−ε,c = (1− 2c) · λ 1

2
−ε,0 + 48c · λ 1

2
−ε,Hdg .

p−1 ∗λ 1
2
−ε,Hdg = λ and it remains to determine

p−1 ∗λ 1
2
−ε,0 = ahHh + auHu + aλλ, au, ah, aλ ∈ Q

step 3: The coefficient au, ah, aλ ∈ Q are determined by walls

1

14
,

5

58
,

29

106
.

Denote the Q-line bundle

∆(c) := 48cλ+ (1− 2c) · (ahHh + auHu + aλλ)

Then any multiple of ∆(c) has no global sections at wall 1
14 . This

shows aλ = −4.
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step 3, continued: at wall 5
58 where hyperellitpic divisor appears,

∆( 5
58 )|Hh

= 0.
This shows ah = 1. Similar arguments will show au = 25.
A key input is that the computation

(λ+ Hu)|Hu = 0, (λ+ Hh)|Hh
= 0

via Borcherds’ work automorphic forms on locally symmetric varieity
F , which gives the relation of Heegner divisors on F . In our case ,

76λ = Hn + 2Hh + 57Hu.
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Some remarks:

For higher dimensional log Fano pairs, to find walls of their K-moduli
seems much harder than dimension 2. The arithmetic stratifications
should be powerful to predict walls for K-moduli of log Fanos related
to K3 surfaces (even irreducible holomorphic symplectic varieties).

It should be interesting to look at the behavior of c > 1
2 and c = 1

2 .
For c > 1

2 , by Alexeev-Engel-Han’s work, the KSBA moduli space
compactifying pairs (BlpP2, cC ) and their slc degeneration has a
natural normalization— Toroidal compactification of F .
For c = 1

2 , it is expected to have a moduli theory for log CY to
connect wall crossing from K-moduli to KSBA moduli.
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Thank you for your attention !
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