Boundary divisors in the compactification by stable surfaces of moduli of Horikawa surfaces University of Nottingham – Algebraic Geometry Seminar

Luca Schaffler (Roma Tre University)

Joint work in progress with: Patricio Gallardo (University of California Riverside) Gregory Pearlstein (University of Pisa) Zheng Zhang (Shanghai Tech University)

July 28, 2022

Horikawa surface

Definition

A **Horikawa surface** S is a smooth projective connected minimal surface over \mathbb{C} which is of general type and satisfying

$$K_S^2 = 1, \qquad p_g = h^2(\mathcal{O}_S) = 2, \qquad q = h^1(\mathcal{O}_S) = 0.$$

▶ S_c = canonical model of S. (K_{S_c} ample, ADE sing's.)

▶ $S_c \rightarrow \mathbb{P}(1,1,2)$ is a 2 : 1 cover branched along $V(F_{10}(x,y,z))$.

• Hence, $S_c = V(w^2 - F_{10}(x, y, z)) \subseteq \mathbb{P}(1, 1, 2, 5).$

Theorem (Gieseker, 1977)

There exists a quasi-projective coarse moduli space M_H parametrizing the canonical models S_c of Horikawa surfaces.

Remark

The dimension of M_H can be computed as follows:

$\dim(\mathbf{M}_H) = 36$	(#monomials $x^a y^b z^c$ s.t. $a + b + 2c = 10$)
-1	(projective scaling)
- 7	$(\dim \operatorname{Aut}(\mathbb{P}(1,1,2))$
= 28	

Problem today. Compactify M_H.

The problem of compactifying M_H

► Hodge Theory. The period domain for Horikawa surfaces is not Hermitian symmetric ⇒ Baily–Borel and toroidal compactification methods do not apply!

Remark. Work of Kato–Usui and Green–Griffiths–Laza–Robles towards generalizing these techniques in the non-Hermitian symmetric case.

- ▶ Other compactifications of M_H attracted attention:
 - Geometric Invariant Theory. $M_H \subseteq \overline{M}_H^{GIT}$ (Wen, 2021);
 - Minimal Model Program. $M_H \subseteq \overline{M}_H^{KSBA}$ due to Kollár, Shepherd-Barron, Alexeev.

Roughly, it is the analogue of the Deligne–Mumford, Knudsen comp's $\overline{M}_{g,n}$ for moduli of higher dim. alg. var's.

KSBA compactification

For a moduli space $\boldsymbol{M},$ the compactification $\overline{\boldsymbol{M}}^{\mathrm{KSBA}}$ is

- geometric (paramet. stable varieties or stable pairs);
- modular (coarse moduli space);
- expected to have rich boundary structure.

Problems to investigate.

- In general, $\partial \overline{\mathbf{M}}^{\text{KSBA}}$ unknown, hard to study (MMP);
- Relation with other compactification methods?

KSBA compactification

Definition

X variety, D \mathbb{Q} -divisor with coefficients in [0,1]. (X,D) is stable if

- (X, D) is semi-log canonical;
- $K_X + D$ is ample.

If (X, 0) is stable, then we say that X is a **stable variety**.

Theorem (Kollár, Shepherd-Barron, Alexeev, ...)

There exists a projective coarse moduli space parametrizing stable pairs (X, D) with certain fixed numerical invariants.

Example

 S_c canonical model of a smooth Horikawa surface S.

- S_c is a stable surface;
- $\blacktriangleright \ \overline{\mathsf{M}}_{H}^{\text{KSBA}} := \{ S_c \text{ and their stable degenerations} \}.$

 \rightarrow Irred. component parametrizing smooth Horikawa surfaces.

$\overline{\mathbf{M}}_{H}^{\text{KSBA}}$: What is known

Franciosi–Pardini–Rollenske (2017):

$$\mathsf{M}_{H}\subsetneq \mathsf{M}_{H}^{\mathrm{Gor}} \subsetneq \overline{\mathsf{M}}_{H}^{\mathrm{KSBA}}$$

 $\mathbf{M}_{H}^{\mathrm{Gor}}$:= parametrizes stable surfaces with Gorenstein singularities. They prove that:

- dim $\partial \mathbf{M}_{H}^{\mathrm{Gor}} = 20$, not pure.
- **M**_H^{Gor} parametrizes irreducible stable surfaces with at worst elliptic singularities.
- ► Franciosi–Pardini–Rana–Rollenske (2022):
 - D₁, D₂ ⊆ M_H^{KSBA} divisors parametrizing irreducible stable surfaces with a unique ¹/₄(1, 1), ¹/₁₈(1, 5) singularity.

Our work is complementary to the above.

$\overline{\mathbf{M}}_{H}^{\mathrm{KSBA}}$: Main results

Let $\Sigma \in \{E_{12}, E_{13}, E_{14}, Z_{11}, Z_{12}, Z_{13}, W_{12}, W_{13}\}$. These indicate certain non-log canonical isolated surface singularities (they will be described later).

$\overline{\mathbf{M}}_{H}^{\mathrm{KSBA}}$: Main results

Let $\Sigma \in \{E_{12}, E_{13}, E_{14}, Z_{11}, Z_{12}, Z_{13}, W_{12}, W_{13}\}.$

Theorem (Gallardo–Pearlstein–S–Zhang, 2022)

(i) \exists 8 boundary divisors $\mathbf{D}_{\Sigma} \subseteq \overline{\mathbf{M}}^{\text{KSBA}}$, $\mathbf{D}_{\Sigma} \neq \mathbf{D}_{1}, \mathbf{D}_{2}$. \mathbf{D}_{Σ} generically parametrizes stable surfaces $S_{\Sigma} = \widetilde{Y}_{\Sigma} \cup \widetilde{Z}_{\Sigma}$.

(ii) $\overline{\mathbf{M}}_{H}^{\mathrm{KSBA}} \dashrightarrow \overline{\mathbf{M}}_{H}^{\mathrm{GIT}}$, given by the identity of \mathbf{M}_{H} , extends to the interior of \mathbf{D}_{Σ} mapping to orbits of stable points.

(iii) The limiting mixed Hodge structure of $S_{\Sigma} = \widetilde{Y}_{\Sigma} \cup \widetilde{Z}_{\Sigma}$ is pure.

Question. What are the simplest **not log canonical** isolated singularities that a Horikawa surface can acquire degenerating?

► Consider isolated surface singularities of modality 1 which are **not log canonical** and that can be realized at

$$[1:0:0:0] \in S_0 = V(w^2 - F_{10}(x,y,z)) \subseteq \mathbb{P}(1,1,2,5).$$

▶ There are eight such singularities with germs in $\mathbb{A}^3_{y,z,w}$ given by

Pictures realized using the software SURFER from www.imaginary.org

Construction of the divisors $\mathbf{D}_{\Sigma} \subseteq \overline{\mathbf{M}}_{H}^{\mathrm{KSBA}}$: general strategy

- For each Σ, we:
 - Find the general 1-parameter smoothing

 $S_0 \subseteq S \rightarrow \Delta = \operatorname{Spec}(\mathbb{C}[[t]]).$

Compute the stable replacement S'₀ ⊆ S' → Δ' of the central fiber S₀ ⊆ S → Δ.

P. Gallardo, G. Pearlstein, L. Schaffler, and Z. Zhang

Compact moduli of Horikawa surfaces

Construction of the divisors $\mathbf{D}_{\Sigma} \subseteq \overline{\mathbf{M}}_{H}^{\mathrm{KSBA}}$: general strategy

- For each Σ, we:
 - Find the general 1-parameter smoothing

 $S_0 \subseteq S \rightarrow \Delta = \operatorname{Spec}(\mathbb{C}[[t]]).$

Compute the stable replacement S'₀ ⊆ S' → Δ' of the central fiber S₀ ⊆ S → Δ.

Definition

 $D_{\Sigma} \subseteq \overline{M}_{H}^{\mathrm{KSBA}}$ is the Zariski closure of the subset of points parametrizing stable surfaces S'_0 as above.

• Show that $D_{\Sigma}\subseteq \overline{M}_{\mathit{H}}^{\rm KSBA}$ is 27-dimensional, hence a divisor.

Remark. If $S_0 \subseteq S \to \Delta$ is just any smoothing, then in general it could be quite hard to find the stable replacement $S'_0 \subseteq S' \to \Delta'$.

Strategy. We construct specific 1-parameter smoothings $S_0 \subseteq S \rightarrow \Delta$ for which we show that:

- the stable replacement S'₀ ⊆ S' → Δ' is obtained after a single weighted blow up S' → S and no base changes, so Δ' = Δ.
- S_0' depend on 27 parameters. So $D_{\Sigma} \subseteq \overline{M}_{\mathcal{H}}^{\mathrm{KSBA}}$ is a divisor.

In the next slide we illustrate the construction of $S_0 \subseteq S \to \Delta$.

The 1-parameter smoothings $S_0 \subseteq S \rightarrow \Delta$

(1) Introduce $\operatorname{wt}_{\Sigma}$: $\{x^a y^b z^c \mid a+b+2c=10\} \rightarrow \mathbb{Z}$ such that: for general h(x, y, z) of degree 10, if $h = h_- + h_0 + h_+$, then

$$S_0 := V(w^2 - (h_0 + h_+)) \subseteq \mathbb{P}(1, 1, 2, 5)$$

has precisely one singularity at [1:0:0:0], and this is of type $\Sigma.$

Example.
$$\Sigma = E_{12}$$
. Recall the germ is $w^2 = z^3 + y^7$. Define $\operatorname{wt}_{\Sigma}(x^a y^b z^c) = 6b + 14c - 42$.

Note that $x^4 z^3$ and $x^3 y^7$ are the only monomials of weight zero. (2) If $wt_{\Sigma}(x^a y^b z^c) < 0$, then let $t \star x^a y^b z^c := t^{-wt_{\Sigma}(x^a y^b z^c)} x^a y^b z^c$.

We define $t \star h_{-}$ extending by linearity.

(3)
$$S := V(w^2 - (t \star h_- + h_0 + h_+)) \subseteq \mathbb{P}(1, 1, 2, 5) \times \Delta$$

The stable replacements $S'_0 \subseteq \mathcal{S}' \to \Delta'$

Consider $S' \to S$ appropriate weighted blow up at [1:0:0:0]:

- $\widetilde{Y}_{\Sigma} :=$ exceptional divisor of $\mathcal{S}' \to \mathcal{S}$.
- \widetilde{Z}_{Σ} := strict transform of S_0 .

Example. $\Sigma = E_{12}$.

 $\widetilde{Y}_{\mathcal{E}_{12}} \subseteq \mathbb{P}(1, 6, 14, 21)$ degree 42 hypersurface, hence it is an ADE K3.

The stable replacements $S'_0 \subseteq \mathcal{S}' \to \Delta'$

Consider $\mathcal{S}' \to \mathcal{S}$ appropriate weighted blow up at [1:0:0:0]:

•
$$\widetilde{Y}_{\Sigma} :=$$
 exceptional divisor of $\mathcal{S}' \to \mathcal{S}$.

•
$$Z_{\Sigma}$$
 := strict transform of S_0 .

The very first result that we prove is then

Theorem (Gallardo–Pearlstein–S–Zhang, 2022) The reducible surface $\widetilde{Y}_{\Sigma} \cup \widetilde{Z}_{\Sigma}$ is stable.

