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Overview

Scattering diagrams arose from mirror symmetry.

Cluster algebras arose in the study of total positivity and found
surprising connections to many algebraic and geometric areas.

Cluster scattering diagrams were applied to prove longstanding
conjectures about cluster algebras.

More recently, a connection was discovered with scattering
amplitudes in physics.

An important output of scattering diagrams are theta functions.

Today’s goals:
• Introduce and connect scattering diagrams and cluster algebras.
• Mention the connection to scattering amplitudes.
• Survey the state of complete combinatorial models for cluster
algebras and cluster scattering diagrams.
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Section 1: Scattering diagrams



Basic setup

Summary:

skew-symmetric matrix,

vector space and its dual,

integer points ↔ Laurent monomials.
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Basic setup

Summary:

skew-symmetric matrix,

vector space and its dual,

integer points ↔ Laurent monomials.

Details:

B is an n × n skew-symmetric integer “exchange matrix”

V real vector space, basis α1, . . . , αn

V ∗ its dual space, basis ρ1, . . . , ρn, dual to α

λ =
∑n

i=1 ciρi ↔ xλ = xc11 · · · xcnn

β =
∑n

i=1 diαi ↔ ŷβ = ŷd11 · · · ŷdnn
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Scattering diagrams
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A scattering diagram is
a set of walls. Each wall
is a codimension-1 cone
in V ∗, decorated with a
scattering term—a formal
power series in the ŷi .
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Scattering diagrams

1 + ŷ1 + 7ŷ21 + · · ·

1 + ŷ1
1

1+ŷ3
1 ŷ2

1 + ŷ21 ŷ
3
2

1 + ŷ21 + ŷ2

1 + ŷ51 ŷ
4
2

A scattering diagram is
a set of walls. Each wall
is a codimension-1 cone
in V ∗, decorated with a
scattering term—a formal
power series in the ŷi .

Details:

• Each wall is normal to a
primitive, positive integer
vector β.

• The scattering term is a
univariate FPS in ŷβ with
constant term 1.

• A finiteness condition
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (d, fd(ŷ
β)) acts on polynomials (or FPS):

xλ 7→ xλf
〈λ,±β〉
d

ŷφ 7→ ŷφf
〈±β,Bφ〉
d

Take “−” if crossing with β or “+” if crossing against β.

Path-ordered product pγ : compose these along a path γ.
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (d, fd(ŷ
β)) acts on polynomials (or FPS):

xλ 7→ xλf
〈λ,±β〉
d

ŷφ 7→ ŷφf
〈±β,Bφ〉
d

Take “−” if crossing with β or “+” if crossing against β.

Path-ordered product pγ : compose these along a path γ.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

Let’s try this in an example (B =
[

0 1
−1 0

]

):
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (d, fd(ŷ
β)) acts on polynomials (or FPS):

xλ 7→ xλf
〈λ,±β〉
d

ŷφ 7→ ŷφf
〈±β,Bφ〉
d

Take “−” if crossing with β or “+” if crossing against β.

Path-ordered product pγ : compose these along a path γ.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

Let’s try this in an example (B =
[

0 1
−1 0

]

):

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1)

γ1
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (d, fd(ŷ
β)) acts on polynomials (or FPS):

xλ 7→ xλf
〈λ,±β〉
d

ŷφ 7→ ŷφf
〈±β,Bφ〉
d

Take “−” if crossing with β or “+” if crossing against β.

Path-ordered product pγ : compose these along a path γ.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

Let’s try this in an example (B =
[

0 1
−1 0

]

):

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1)

pγ2 : x
−1
1 7→ x−1

1 (1 + ŷ1) 7→ x−1
1 (1 + ŷ1(1 + ŷ2))

γ1

γ2
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products.
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products.

Example. Does the diagram below have 2 walls or 4?

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products.

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products.

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

γ1

γ2
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products.

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

We can make it consistent by adding one wall.

γ1

γ2

1 + ŷ1ŷ2

Scatter, cluster, scatter, model Scattering diagrams 5



Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products.

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

We can make it consistent by adding one wall.

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1ŷ2)

7→ x−1
1 (1 + ŷ1)(1 + ŷ1ŷ2(1 + ŷ1)

−1)

γ1

γ2

1 + ŷ1ŷ2

Scatter, cluster, scatter, model Scattering diagrams 5



Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products.

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

We can make it consistent by adding one wall.

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1ŷ2)

7→ x−1
1 (1 + ŷ1)(1 + ŷ1ŷ2(1 + ŷ1)

−1)

pγ2 : x
−1
1 7→ x−1

1 (1 + ŷ1) 7→ x−1
1 (1 + ŷ1(1 + ŷ2))

γ1

γ2

1 + ŷ1ŷ2
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Cluster scattering diagrams

Theorem (Gross, Hacking, Keel, Kontsevich, 2014). Given a
skew-symmetric integer matrix B , there is unique (up to
equivalence) consistent scattering diagram ScatT (B)
(the cluster scattering diagram) such that

D contains the walls (α⊥
i , 1 + ŷi ).

All other walls are outgoing.

A wall (d, fd(ŷ
β)) is outgoing if it does not contain Bβ.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

1
+
ŷ
1 ŷ
2

Example. The cluster scattering diagram

for B =
[

0 1
−1 0

]

.
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Cluster scattering diagrams

Theorem (Gross, Hacking, Keel, Kontsevich, 2014). Given a
skew-symmetric integer matrix B , there is unique (up to
equivalence) consistent scattering diagram ScatT (B)
(the cluster scattering diagram) such that

D contains the walls (α⊥
i , 1 + ŷi ).

All other walls are outgoing.

A wall (d, fd(ŷ
β)) is outgoing if it does not contain Bβ.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

1
+
ŷ
1 ŷ
2

Example. The cluster scattering diagram

for B =
[

0 1
−1 0

]

.

The point: The wall we added is outgoing.
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Cluster scattering fans

(Vaguely Stated) Theorem (R., 2017). A consistent scattering
diagram cuts space into a complete (not necessarily finite) fan.

Cluster scattering fan: The complete fan cut out by the cluster
scattering diagram.
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Theta functions

For every rational vector λ ∈ V ∗, there is theta function ϑλ,
defined as a sum over monomials labeling broken lines in the
cluster scattering diagram.
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1 + ŷ2
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ŷ
1 ŷ 3
2

B = [ 0 1
−3 0 ]
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Theta functions

For every rational vector λ ∈ V ∗, there is theta function ϑλ,
defined as a sum over monomials labeling broken lines in the
cluster scattering diagram.
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ŷ
1 ŷ 22
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Theta functions

For every rational vector λ ∈ V ∗, there is theta function ϑλ,
defined as a sum over monomials labeling broken lines in the
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ŷ
1 ŷ
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1 ŷ 22

1
+
ŷ
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For every rational vector λ ∈ V ∗, there is theta function ϑλ,
defined as a sum over monomials labeling broken lines in the
cluster scattering diagram.

1 + ŷ1
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Recap of Section 1: Scattering diagrams

A scattering diagram is a collection of walls. A wall is (d, fd(ŷ
β))

d is a codimension-1 cone.

β is a positive integer normal vector.

fd is the scattering term, a formal power series in ŷβ.

Path-ordered product: at each wall crossing, replaces each
monomial by itself times a power of the scattering term fd.

Consistent scattering diagram: path-ordered products depend only
on endpoints.

Cluster scattering diagram: Start with coordinate hyperplanes. ∃!
way to add “outgoing” walls to get a consistent scattering diagram.

Theta functions: ϑλ for each rational λ. Sum over “broken lines”.

Questions?
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Section 2: Cluster algebras



Cluster algebras

Start with an initial seed consisting of initial cluster variables
x1, . . . xn and a skew-symmetric integer matrix B .

Mutation: an operation that takes a seed and gives a new seed.

There are n “directions” for mutation.

Mutation does two things:

switches out one cluster variable, replaces it with a new one;
changes B (and some extra rows) by matrix mutation.

The result is a new seed.

Mutation is involutive.
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Cluster algebras (continued)

Do all possible sequences of mutations, and collect all the cluster
variables which appear.

B, (x1, x2, x3)

✎
✍

☞
✌

µ1(B), (x ′1, x2, x3)
✎
✍

☞
✌

�
��

❅
❅❅

µ3(B), (x1, x2, x ′3)
✎
✍

☞
✌µ2(B), (x1, x ′2, x3)

✎
✍

☞
✌

❅❅��

❅❅��

1

2 3

23

3 2

11

The cluster algebra for the given initial seed is the subalgebra of F
generated by all cluster variables.
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Mutation details

Write [a]+ for max(a, 0).

B ′ = µk(B) is:

b′ij =

{

−bij if k ∈ {i , j};

bij + sgn(bkj )[bikbkj ]+ otherwise.

We want principal coefficients, meaning we actually work with
[

B
I

]

but we only mutate in directions 1, . . . , n.

Mutating (x1, . . . , xn) in direction k means keeping xi for i 6= k

and replacing xk by x ′k according to the exchange relations

xkx
′
k =

n
∏

i=1

x
[bik ]+
i y

[b(n+i)k ]+
i +

n
∏

i=1

x
[−bik ]+
i y

[−b(n+i)k]+
i .

The y1, . . . , yn are certain indeterminates.
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Cluster variables example

Exchange matrix: B =
[

0 1
−1 0

]

, extended to

[

0 1
−1 0
1 0
0 1

]

.

The cluster variables are

x1, x2,
x2 + y1

x1
,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2
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Cluster variables example

Exchange matrix: B =
[

0 1
−1 0

]

, extended to

[

0 1
−1 0
1 0
0 1

]

.

The cluster variables are

x1, x2,
x2 + y1

x1
,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2

Make a change of variables:

Set
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0 1

]
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Cluster variables example

Exchange matrix: B =
[

0 1
−1 0

]

, extended to

[

0 1
−1 0
1 0
0 1

]

.

The cluster variables are

x1, x2,
x2 + y1

x1
,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2

Make a change of variables:

Set ŷ1 = y1x
−1
2 and ŷ2 = y2x1.
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Cluster variables example

Exchange matrix: B =
[

0 1
−1 0

]

, extended to

[

0 1
−1 0
1 0
0 1

]

.

The cluster variables are

x1, x2,
x2 + y1

x1
,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2

Make a change of variables:

Set ŷ1 = y1x
−1
2 and ŷ2 = y2x1. The cluster variables become:

x1, x2, x−1
1 x2(1 + ŷ1), x−1

1 (1 + ŷ1 + ŷ1ŷ2), x−1
2 (1 + ŷ2)
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Cluster variables example

Exchange matrix: B =
[

0 1
−1 0

]

, extended to

[

0 1
−1 0
1 0
0 1

]

.

The cluster variables are

x1, x2,
x2 + y1

x1
,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2

Make a change of variables:

Set ŷ1 = y1x
−1
2 and ŷ2 = y2x1. The cluster variables become:

x1, x2, x−1
1 x2(1 + ŷ1), x−1

1 (1 + ŷ1 + ŷ1ŷ2), x−1
2 (1 + ŷ2)

One of these might look familiar. It was the path-ordered product
applied to x−1 in the cluster scattering diagram example for
B =

[

0 1
−1 0

]

.
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Cluster algebras and scattering diagrams (Principal coefficients)

Theorem (Fomin-Zelevinsky, 2007). Each
cluster variable v is a Laurent monomial
xg(v) times a polynomial in the ŷi .
(The vector g(v) is the g-vector of v .)

Theorem (GHKK, 2014). Part of the
cluster scattering diagram cuts out the

x2

1
x2
(1 + ŷ2)

x1
1
x1

(1 + ŷ1 + ŷ1 ŷ2)

x
2x

1 (1
+
ŷ
1 )

cluster fan, whose rays are spanned by the g-vectors of cluster
variables and whose cones are spanned by the g-vectors of clusters.

Cluster monomial: monomial in the clus. variables in some cluster.
∃ cluster monomial for every rational point in the cluster fan.

Theorem (GHKK, 2014). Any cluster monomial v is ϑg(v).

Theorem (morally GHKK, 2014, but R. had fun noticing it, 2017).
Let v be a cluster monomial, let γ be a path from “near” g(v) to
the positive cone. Then v = pγ(x

g(v)) (path-ordered product).
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Something like a cluster monomial outside the cluster fan?

From the previous slide (with some new terminology):

Cluster monomials ↔ Theta functions ϑλ for λ in cluster fan.

Define the return function retλ = pγ(x
λ), for γ a path from

“near” λ to the positive cone.

Cluster monomials ↔ retλ for λ in the cluster fan.
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about cluster scattering diagrams).
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λ), for γ a path from

“near” λ to the positive cone.

Cluster monomials ↔ retλ for λ in the cluster fan.

ϑλ and retλ are well-defined even for λ outside the cluster fan.
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Return functions retλ are not on most radar screens.

Are they the same as theta functions?

Are they interesting?
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Something like a cluster monomial outside the cluster fan?

From the previous slide (with some new terminology):

Cluster monomials ↔ Theta functions ϑλ for λ in cluster fan.

Define the return function retλ = pγ(x
λ), for γ a path from

“near” λ to the positive cone.

Cluster monomials ↔ retλ for λ in the cluster fan.

ϑλ and retλ are well-defined even for λ outside the cluster fan.

Theta functions are on everyone’s “radar screen” (if they think
about cluster scattering diagrams).

Return functions retλ are not on most radar screens.

Are they the same as theta functions? No.

Are they interesting? Yes.
Scatter, cluster, scatter, model Cluster algebras 15



An affine rank-2 example: B = [ 0 2
−2 0 ]

The cluster fan is the whole plane except for
the ray spanned by [−1, 1]. Set λ = [−1, 1].
By definition, for some formal power series N ,

retλ = x−1
1 x2 · N (ŷ1, ŷ2).

Number the cluster variables x1, x2, . . . clock-
wise from the initial cluster.

γ

x1

x2x3

Each xi is x
g(xi ) · Fi , for some polynomial Fi in the ŷ .

Theorem (R., 2017)

N (ŷ1, ŷ2) = lim
i→∞

Fi+1

Fi
=

1 + ŷ1 + ŷ1ŷ2 +
√

(1 + ŷ1 + ŷ1ŷ2)2 − 4ŷ1ŷ2
2

.
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the ray spanned by [−1, 1]. Set λ = [−1, 1].
By definition, for some formal power series N ,

retλ = x−1
1 x2 · N (ŷ1, ŷ2).

Number the cluster variables x1, x2, . . . clock-
wise from the initial cluster.
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the ray spanned by [−1, 1]. Set λ = [−1, 1].
By definition, for some formal power series N ,

retλ = x−1
1 x2 · N (ŷ1, ŷ2).

Number the cluster variables x1, x2, . . . clock-
wise from the initial cluster.

γ

x1

x2x3

Each xi is x
g(xi ) · Fi , for some polynomial Fi in the ŷ .

Theorem (R., 2017)

N (ŷ1, ŷ2) = lim
i→∞

Fi+1

Fi
=

1 + ŷ1 + ŷ1ŷ2 +
√

(1 + ŷ1 + ŷ1ŷ2)2 − 4ŷ1ŷ2
2

.

This is, essentially, the generating function for Narayana numbers.

Who knew this was mathematical physics?
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Aside: Scattering amplitudes

Empirically measurable probability density in n-space. In principle,
computed/approximated as a sum/integral over Feynman
diagrams. In practice, computations are forbidingly complex.

Amplitudes can be encoded compactly as sums of tensor products
of certain “symbols” (certain functions of x1, . . . , xn).

Current hot idea: Can we skip Feynman diagrams and directly find
symbols and how symbols combine as tensor products? We need a
a machine that makes functions.

In some cases, “symbols” are cluster variables and compatibility
describes which symbols appear together in tensor products.

In more complicated cases, there are irrational symbols, related to
theta functions and return functions. Compute these? Use the
cluster scattering fan to describe which symbols appear together?

Upshot: This is another reason to want combinatorial models.
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Recap of Section 2: Cluster algebras

Cluster algebras: A multi-directional recurrence produces “clusters”
of cluster variables, which are rational functions in the xi and yi .

Cluster monomials: Monomials in the cluster variables in a cluster.

Each cluster monomial v is xg(v) · (a polynomial in the ŷi).
The vector g(v) is the g-vector of v .

This fits into the cluster scattering diagram picture. Each v is:

• a return function retg(v).

• a theta function ϑg(v).

retλ and ϑλ make sense even when λ is not the g-vector of a
cluster monomial. But computing them takes work.

Questions?
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Section 3: Combinatorial models



What we want

Given a skew-symmetric (skew-symmetrizable) B , and some
specific B in particular, it would be good to know:

the cluster variables;

the scattering diagram;

the scattering fan;

the theta functions ϑλ; and

the return functions retλ.
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Given a skew-symmetric (skew-symmetrizable) B , and some
specific B in particular, it would be good to know:

the cluster variables;

the scattering diagram;

the scattering fan;

the theta functions ϑλ; and

the return functions retλ.

We want combinatorial models for this.
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Finite type

Finite type: there are only finitely many cluster variables.

Theorem (Fomin-Zelevinsky 2002).

The cluster algebra is of finite type if and only if B
has

associated Cartan matrix A of finite type.
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Finite type

Finite type: there are only finitely many cluster variables.

Theorem (Fomin-Zelevinsky 2002).

The cluster algebra is of finite type if and only if B (is
mutation-equivalent to an exchange matrix that) has
associated Cartan matrix A of finite type.

Cluster variables are Laurent polynomials. Their denominator
vectors are almost positive roots in the root system for A.

{cluster variables} ↔ {almost positive roots} is a bijection.

A combinatorial description of “adjacency”.

Example: B =
[

0 1
−1 0

]

, A =
[

2 −1
−1 2

] α1−α1

α2

−α2

α1 + α2

The cluster variables are

x1, x2,
x2 + y1

x1
,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2
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Finite type (continued)

Compatibility (“adjacency”) of almost positive roots:

−αi compatible with β iff β is a combination of the other

simple roots.

Compatibility is invariant under a certain “rotation” of the
almost positive roots (a piecewise linear map that is a
deformation of a Coxeter element).

Example (and model).

B =
[

0 1 0
−1 0 −1
0 1 0

]

A =
[ 2 −1 0
−1 2 −1
0 −1 2

]

Simples: {α1, α2, α3}

Other positive roots: α1 + α2, α2 + α3, α1 + α2 + α3.

−α1

−α2

−α3
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Compatibility (“adjacency”) of almost positive roots:
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−αi compatible with β iff β is a combination of the other

simple roots.

Compatibility is invariant under a certain “rotation” of the
almost positive roots (a piecewise linear map that is a
deformation of a Coxeter element).

Example (and model).
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−1 0 −1
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]

A =
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Finite type (continued)

Compatibility (“adjacency”) of almost positive roots:

−αi compatible with β iff β is a combination of the other

simple roots.

Compatibility is invariant under a certain “rotation” of the
almost positive roots (a piecewise linear map that is a
deformation of a Coxeter element).

Example (and model).

B =
[

0 1 0
−1 0 −1
0 1 0

]

A =
[ 2 −1 0
−1 2 −1
0 −1 2

]

Simples: {α1, α2, α3}

Other positive roots: α1 + α2, α2 + α3, α1 + α2 + α3.

α1 + α2 + α3

−α1

−α2

−α3

Scatter, cluster, scatter, model Combinatorial models 21



Example (continued) The 3-dimensional associahedron

Clusters ↔ triangulations. Mutations ↔ diagonal flips.
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Another approach to finite type (R., Speyer)

Exchange matrix B ↔ Cartan matrix A and Coxeter element c .

Coxeter element: product of the simple reflections in some order.

Example: B =
[

0 1 0
−1 0 1
0 −1 0

]

, A =
[ 2 −1 0
−1 2 −1
0 −1 2

]

, c = s1s2s3

The cluster fan is the
c-Cambrian fan, which is
constructed using the com-
binatorics of reduced words
for c-sortable elements in
the Weyl group W .

The walls of the c-Cambrian
fan are certain pieces (called
shards) of the reflecting hy-
perplanes for W .
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Example: c-Sortable elements, c-Cambrian fans, shards

B =
[

0 1 0
−1 0 1
0 −1 0

]

A =
[ 2 −1 0
−1 2 −1
0 −1 2

]

W = S4

c = s1s2s3
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Affine type

Two equivalent definitions (for 3× 3 and larger):

B is mutation equivalent to an acyclic exchange matrix whose
associated Cartan matrix is of affine type.

Infinitely many cluster variables, but linear growth.

We can model this completely using the

Affine almost positive roots model (R.-Stella), and the

Doubled Cambrian fan construction (R.-Speyer).

In particular, the models

Build the cluster scattering diagram/fans explicitly using
shards (with Stella),

Construct all theta functions (with Stella, in progress), and

Construct the return function retλ for λ in the direction of the
limiting ray (in progress).
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Affine type details: Almost positive Schur roots

Start with a finite root system
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Affine type details: Almost positive Schur roots

Start with a finite root system (A2 in this case)

Construct an affine root system (Ã2)
(including imaginary roots)

Divide them into positive and negative roots.

Restrict to the almost positive roots.

Restrict further to the almost positive Schur roots.

Observation: The real roots limit, from two sides, to
the direction of the imaginary root.
(This is true in general affine type.)
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A.p. Schur roots and clus. scattering diagrams (R., Stella)

Almost positive Schur roots appear in two ways in clus-
ter scattering diagrams:

1. They index the rays of the fan.

There is a piecewise-linear bijection from real
a.p. Schur roots to g-vectors of cluster variables.
The one imaginary a.p. Schur root corresponds
to a “limiting ray” outside the cluster fan.
There is a combinatorial description of
“compatibility” similar to finite type.

2. {Positive Schur roots}
= {normal vectors to walls}.

Exactly one wall normal to each root.
There is one limiting “imaginary wall”.
All other walls are walls of the cluster fan.
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Affine scattering fan example
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Affine type details: Doubled Cambrian fans (R., Speyer)

Cambrian fans can be defined even for infinite Coxeter groups. In
every case, the Cambrian fan is a subfan of the cluster fan.

In the infinite case, they are not the whole cluster fan.
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Affine type details: Doubled Cambrian fans (R., Speyer)

Cambrian fans can be defined even for infinite Coxeter groups. In
every case, the Cambrian fan is a subfan of the cluster fan.

In the infinite case, they are not the whole cluster fan.

In the affine case, the entire cluster fan can be constructed from
two overlapping pieces: The c-Cambrian fan and the antipodal
opposite of the c−1-Cambrian fan.
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Theta functions and return functions for the limiting ray

Take λ to be the shortest integer vector in the limiting ray. Here
are some “Theorems in progress” (some with Stella):

We give an explicit formula for ϑλ as a linear combination of
three terms.

Two terms are of the form
(monomial in the yi ’s) · (cluster variable)

One term is a product of cluster variables.

For k ≥ 1, ϑkλ is something like a Chebshev polynomial in ϑλ.

retλ =
ϑλ +

√

ϑ2
λ − 4ŷ δx2λ

2
.

For a particular sequence . . . , x−1, x0, x1, . . . of cluster
variables and a particular choice of exponents a1, . . . , an ∈ Z,

retλ = lim
k→∞

n
∏

i=1

x
ai
kn+i

= lim
k→−∞

n
∏

i=1

x
−ai
kn+i

.
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Surfaces

There is no (cluster-algebraically) intrinsic definition here.
Rather, there is a model involving triangulated surfaces that covers
many, but certainly not all, cluster algebras.

We start with an orientable surface, triangulated using n arcs. The
vertices of the triangulation are called marked points.

Cluster variables correspond to non-self-intersecting arcs
connecting marked points.

Other theta functions correspond to non-self-intersecting
closed curves.

“Adjacency” of these functions is non-intersection.

Return functions retλ have not been studied here.
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Surface example
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Surface example
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Surface example
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Surface example
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I should probably mention

Plabic graphs

SL3 webs

Scatter, cluster, scatter, model Combinatorial models 34



Section 4: Mutation



Mutation and mutation maps

Recall matrix mutation in direction k :

B ′ = µk(B) is:

b′ij =

{

−bij if k ∈ {i , j};

bij + sgn(bkj )[bikbkj ]+ otherwise.

(Recall also [a]+ means max(a, 0).)

For each B and each sequence k of indices, there is a mutation
map ηBk , which takes a vector a, places it below B as a new row,
does mutations in indices k, and reads off the new last row.
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Mutation symmetry

Key fact: The mutation map ηB
T

k is an isomorphism from the
cluster scattering fan for B to the cluster scattering fan for µk(B).
(With a little more work, you can pull along cluster scattering
diagrams, broken lines, and theta functions.)

A mutation symmetry of B is a sequence k of indices such that
µk(B) = B .

Upshot: If k is a mutation symmetry, then ηB
T

k is an
automorphism of the cluster scattering fan/diagram for B .

In some sense, the Key Fact is due to GHKK, but their mutation
definition hides mutation symmetry. (Do a mutation symmetry
their way, and you need a linear map to get back to the cluster
scattering fan of B .)

Greg Muller was first to mutate scattering diagrams this way.
Stella and I wrote down this mutation of theta functions.
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Mutation symmetry and structure constants

Stella and I are working to compute theta functions and structure
constants for multiplication of theta functions in affine type.

I’ll sketch the first way that mutation symmetry helps. (Other uses
of mutation symmetry, which we won’t talk about, must look more
subtly at how broken lines mutate.)

Theorem (R., Stella 2021). Suppose k is a mutation symmetry

and suppose λ and ν are in finite ηB
T

k -orbits. Then ϑλ · ϑν is a
linear combination of theta functions indexed by vectors in finite
ηB

T

k -orbits.

The hypotheses of the theorem are beyond what I can introduce
today, but include affine type. (For experts: Θ is the whole space.)
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Mutation symmetry and structure constants

Stella and I are working to compute theta functions and structure
constants for multiplication of theta functions in affine type.

I’ll sketch the first way that mutation symmetry helps. (Other uses
of mutation symmetry, which we won’t talk about, must look more
subtly at how broken lines mutate.)

Theorem (R., Stella 2021). Suppose k is a mutation symmetry

and suppose λ and ν are in finite ηB
T

k -orbits. Then ϑλ · ϑν is a
linear combination of theta functions indexed by vectors in finite
ηB

T

k -orbits.

The hypotheses of the theorem are beyond what I can introduce
today, but include affine type. (For experts: Θ is the whole space.)

Let’s look at an example.
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Affine scattering fan example (again)

Scatter, cluster, scatter, model Mutation 38



Mutation symmetry and structure constants (continued)

Theorem (R., Stella 2021). If λ and ν are in finite ηB
T

k -orbits,
then ϑλ · ϑν is a combination of theta functions indexed by vectors
in finite ηB

T

k -orbits.

Proof idea. Hypotheses imply that ϑλ · ϑν has a unique expression
as a finite linear combination of theta functions:

ϑλ · ϑν =
∑

τ∈T

cτϑτ .

A detailed description of mutation of theta functions + the fact

that λ is in a finite ηB
T

k -orbit implies that
(

ηB
T

k

)ℓ
(ϑλ) is ϑλ times

a monomial in the “coefficients”, for some ℓ. Same for ν.

So: Applying the right power of ηB
T

k fixes ϑλ · ϑν (up to a
coefficient). Therefore it fixes every theta-function that appears in
∑

τ∈T cτϑτ . Proof idea

Scatter, cluster, scatter, model Mutation 39





Thank you for listening.

Scattering fans (R. 2020).

A combinatorial approach to scattering diagrams (R. 2020).

An affine almost positive roots model (R., Stella 2020).

Cluster scattering diagrams of acyclic affine type (R, Stella 2022).

Cambrian frameworks for cluster algebras of affine type

(R., Speyer 2018).

...and more to come soon (some with Stella).
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