The geometry of Weyl orbits on blow-ups of projective spaces

Elisa Postinghel
University of Trento

Nottingham Online Algebraic Geometry Seminar 7th July 2022

Blow-ups of projective spaces at points in general position Let $p_{1}, \ldots, p_{s} \subset \mathbb{P}_{\mathbb{\Phi}}^{n}$ points in general position. Consider the blow-up

$$
\begin{aligned}
\pi: X_{s}^{n} & \rightarrow \mathbb{P}^{n} \\
E_{i} & \mapsto p_{i}
\end{aligned}
$$

If $H=\pi^{*} \mathcal{O}_{\mathbb{P}^{n}}(1)$ is the general hyperplane class, then

$$
\operatorname{Pic}\left(X_{s}^{n}\right)=\left\langle E_{1, \ldots,}, E_{s}, H\right\rangle
$$

- Motivation (polynomial interpolation):
$\left\{\begin{array}{l}\text { Degree- } d \text { hypersurfaces of } \mathbb{P}^{n} \\ \text { vanishing with multiplicity } \geq m_{i} \text { at } p_{i}, \\ i=1 \ldots, s\end{array}\right\} \leftrightarrow|D|=\left|d H-\sum_{i=1}^{s} m_{i} E_{i}\right|$
How many?
Any/how many unexpected ones?

$$
\leftrightarrow \quad \operatorname{dim} H^{0}\left(X, O(D)=h^{0}(D)\right.
$$

Virtual dimension and Base locus
The virtual dimension of $|D|$ is

$$
\operatorname{vdim}(D)=\chi\left(\mathcal{O}_{X}(D)\right)-1=\binom{m+d}{m}-\sum_{i=1}^{s}\binom{m+m_{i}-1}{m}-1
$$

- If $h^{\circ}(D)=\chi(D) \leadsto D$ mon-special
- $\chi(D)=h^{0}(D)-\underbrace{h^{2}(D)}, h^{i}(D)=0 \quad i \geqslant 2$
measure of specincely
- If $\operatorname{Bs}|D|=\emptyset$, we expect that it is non-special.
- If $\operatorname{Bs}|D| \neq \emptyset$, then it might be special (in this case we talk about special effect subvariety).

Can we say when it actually is special?

Special effect plane curves: examples

$$
\begin{aligned}
& |\overbrace{\mid 6 H-4 E_{1}-4 E_{2}}^{D}=2(\overbrace{H-E_{1}-E_{2}})+\left|\widetilde{\mid 4 H-2 E_{1}-2 E_{2}}\right|, \quad h^{1}(D)=1 \\
& \chi(D)=8 \\
& h^{0}=9
\end{aligned}
$$

$\left|7 H-5 E_{1}-5 E_{2}\right|=3\left(H-E_{1}-E_{2}\right)+\left|4 H-2 E_{1}-2 E_{2}\right|$,

$$
h^{\prime}(D)=3
$$

$X(D)=6 \quad$ special effect line $\quad a^{0}=9$

$$
h^{\prime}(0)=1
$$

$X(\nu)=0 \quad$ special effect conic

$$
h^{\prime}(D)=0
$$

Rank $\cdot(-1)$-curves : inced not ie $C^{2}=-1 \quad\left(C K_{x}=-1\right)$

- cubic is mot

Conjectures for \mathbb{P}^{2}
B. Segre

Conjecture (SHGH)
Special effect curves for nonempty linear systems on X_{s}^{2} are all and only the (-1)-curves (contained at least twice in the base locus).

True for $s \leq 9$ (Castelnuovo)
$\delta \leqslant 8$ filmiterey manes (-1)-cannes
$\delta=9$ \& many (-1 - ounces

Conjecture (Nagata)
The divisor $\left|d H-m \sum_{i}^{s} E_{i}\right|=\emptyset$ if $s \geq 9$ and $d \leq \sqrt{s} m$.

Mori dream blow-ups of projective spaces

Theorem (Mukai '01; Castravet, Tevelev '06)
X_{s}^{n} is a Mori dream space i.e. $\operatorname{Cox}(X)$ f.g. if and only if
(1) $n=2 \& s \leq 8$,
(2) $n=3 \& s \leq 7$,
\checkmark Cashecinuow
\checkmark Today'staer
($n=4$ \& $s \leq 8$,
In progron (C. Sentorn Sancoa)
(-) $n \geq 5 \& s \leq n+3$.
\checkmark Today's woh

Dinensonality

Linear systems on del Pezzo surfaces

Assume $s \leq 8$ and consider $X=X_{8}^{2}$.
Theorem (Castelnuovo)
Consider divisors $D=d H-\sum_{i}^{s} m_{i} E_{i}$. Then $\max \{0,-C \cdot D\}$

$$
h^{0}(X, D)=\chi(D)+\sum_{C}\left(\frac{m u l t_{c}(D)}{2}\right)
$$

$$
(-1) \text {-cures }
$$

$Q^{\prime}(0)$

Moreover,

- (-1)-curves generate the effective cone of X.
- (-1 -curves are related to one another by a sequence of Cremona transformations

Standard Cremona involutions of \mathbb{P}^{2}

$$
\mathrm{Cr}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}, \quad\left[x_{0}: x_{1}: x_{2}\right] \rightarrow\left[x_{0}^{-1}: x_{1}^{-1}: x_{2}^{-1}\right],
$$

Standard Cremona involutions of \mathbb{P}^{2}
Cr lifts to an automorphism of $\operatorname{Pic}\left(X_{3}^{2}\right)$, that extends to $\operatorname{Pic}\left(X_{s}^{2}\right)$

$$
\begin{aligned}
\text { Pic }\left(X_{s}^{2}\right) & \longmapsto \operatorname{Pic}\left(X_{s}^{2}\right) \\
H & \longmapsto 2 H-E_{1}-E_{2}-E_{3} \\
\{i, j, k\}=\{1,2,3\} \quad E_{i} & \longmapsto H-E_{j}-E_{k} \\
j \notin\{1,2,3\} \quad E_{j} & \longmapsto E_{j}
\end{aligned}
$$

Action is transitive with

- finite orbit if $s \leq 8$
- infinite orbit if $s \geq 9$

Standard Cremona involutions of \mathbb{P}^{n}

$$
\mathrm{Cr}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}, \quad\left[x_{0}: \cdots: x_{n}\right] \rightarrow\left[x_{0}^{-1}: \cdots: x_{n}^{-1}\right]
$$

Action on $\operatorname{Pic}\left(X_{s}^{n}\right)$:

$$
\begin{array}{lr}
H \longmapsto n H-(n-1) \sum_{i \in I} E_{i} & \\
E_{i} \longmapsto H-\sum_{j \in \Lambda \backslash\{i\}} E_{j} & i \in I \\
E_{i} \longmapsto E_{i} & i \notin I
\end{array}
$$

Definition (Dolgachev '83)

The Weyl group W_{s}^{n} acting on $\operatorname{Pic}\left(X_{s}^{n}\right)$ is the group generated by the standard Cremona involutions with the operation of composition.
(-1)-divisors: Dolgachev-Mukai pairing
$\langle\cdot, \cdot\rangle: \operatorname{Pic}\left(X_{s}^{n}\right) \times \operatorname{Pic}\left(X_{s}^{n}\right) \rightarrow \mathbb{Z}$

$$
\begin{aligned}
\langle H, H\rangle & =n-1 \\
\left\langle H, E_{i}\right\rangle & =0 \\
\left\langle E_{i}, E_{j}\right\rangle & =-\delta_{i, j} .
\end{aligned}
$$

D is a (-1)-divisor if

$$
\langle D, D\rangle=-1, \quad \frac{1}{n-1}\left\langle D,-K_{x}\right\rangle=1
$$

If X_{s}^{n} is a MDS \Longleftrightarrow finitely many (-1)-divisors
They form a single orbit for the W_{s}^{n} action.
They generate $E f f(X)$

Weyl cycles

(-1) divisor

Definition (Brambilla, Dumitrescu, P)

- We say that an effective divisor $D \in \operatorname{Pic}\left(X_{s}^{n}\right)$ is a Weyl divisor if it belongs to the Weyl orbit of an exceptional divisor E_{i}.
- A nontrivial effective cycle $S \in A^{n-r}\left(X_{s}^{n}\right)$ is a Weyl cycle of dimension r if it is an irreducible component of the intersection of pairwise orthogonal Weyl divisors.
w.n.t Yukon pouining

Examples of Weyl cycles

Example

$$
n=3
$$

$$
\begin{aligned}
& \quad\left\langle D_{1} F\right\rangle=0 \\
& D=H-\mid \overrightarrow{E_{1}-E_{2}}-E_{3} \\
& F=H-\left|E_{1}-E_{2}\right|-E_{4}
\end{aligned}
$$

$$
D \cap F=L
$$

Example
$n=4$

$$
\begin{aligned}
& D=H-E_{1}-E_{2}-E_{3}-E_{4} \\
& F=H-E_{1}-E_{2}-E_{3}-E_{5} \\
& G=H-E_{1}-E_{2}-E_{4}-E_{5}
\end{aligned}
$$

$$
D \cap F=L_{1,2,3}
$$

$$
D \cap F \cap G=\underline{L_{1,2}}
$$

In general: (Strict transforms of) linear spans of points are Weyl cycles

Weyl cycles
Example $n=3$
$D=2 H-2 E_{1}-E_{2}-E_{3}-E_{4}-E_{5}-E_{6}$
$F=2 H-E_{1}-2 E_{2}-E_{3}-E_{4}-E_{5}-E_{6}$

$$
D \cap F=\underbrace{\left(h-e_{1}-e_{2}\right)}+(\underbrace{3 h-e_{1}-e_{2}-e_{3}-e_{4}-e_{5}-e_{6}})
$$

Weyl line and Weyl twisted cubic

Weyl cycles on X_{n+3}^{n}
Theorem (Brambilla, Dumitrescu, Laface, P, Santana Sánchez)
The following are Weyl cycles:

- $L_{I}, I=\left\{i_{0}, \ldots, i_{r}\right\}$, linear spans of points
- C, the rational normal curve of degree n through $n+3$ points
- $\sigma_{t}(C)$, the secant varieties of C
- Join $\left(\sigma_{t}(C), L_{l}\right)$

$$
\sigma_{t}(c)=U\{t-\sec \cos t(t-1)-p \operatorname{son} \theta\}
$$

-) wee Wye cycles in the lest of $\operatorname{dim} 1$ belong to Frye rit of n-phone
-) dúrorial ono generate Eff $\left(x_{n+3}^{n}\right)$

Weyl cycles on X_{7}^{3}

The Weyl cycles on X_{7}^{3} are all and only the following:

- Curves (28 classes):
(1) $L_{i, j}$

21 lines through two points
(2) C_{i} 7 twisted cubic through six points

- Surfaces (126 classes):
(1) E_{1}
(2) $H-E_{1}-E_{2}-E_{3} \quad 35$ planes through 3 points
(3) $2 H-2 E_{1}-E_{2}-E_{3}-E_{4}-E_{5}-E_{6}$
(9) $3 H-2\left(E_{1}+E_{2}+E_{3}+E_{4}\right)-E_{5}-E_{6}-E_{7}$ 42 quadric cones
(3) $\left.4 H-3 E_{1}-2\left(E_{2}+E_{3}+E_{4}+E_{5}+E_{6}+E_{7}\right)\right\}$ 35 Cayley surfaces 7 quartic surfaces

Weyl curves and surfaces on X_{8}^{4}

(Up to the S_{8} action)

- Curves (35 classes):
(1) $L_{i, j}$

28 lines through 2 points
(2) C_{i}

7 quartic normal curve through 7 points

- Surfaces (196 classes):
(1) $h-e_{1}-e_{4}-e_{5}$
(2) $3 h-3 e_{1}-\sum_{i=2}^{7} e_{i}$
(3) $6 h-3 \sum_{i=1}^{5} e_{i}-\sum_{i=6}^{8} e_{i}$
(4) $10 h-6 e_{1}-6 e_{2}-\sum_{i=3}^{8} 3 e_{i}$
(5) $15 h-\sum_{i=1}^{7} 6 e_{i}-3 e_{8}$

56 planes through 3 points 48 pointed cones
56 sextic surfaces
28 degree 10 surfaces
8 degree 15 surfaces

Weyl divisors on X_{8}^{4}

- Divisors (2160 classes):
(1) E_{1},
(2) $H-\sum_{i=1}^{4} E_{i}$
(3) $2 H-2 E_{1}-2 E_{1}-\sum_{i=3}^{7} E_{i}$
(9) $3 H-\sum_{i=1}^{7} 2 E_{i}$
exceptional
hyperplane through 4 points quadric cone over a RNC secant-line variety to a RNC
(5) $3 H-3 E_{1}-\sum_{i=2}^{5} 2 E_{i}-\sum_{i=6}^{8} E_{i} \quad$ pointed cone over a Cayley surface
(0) $4 H-\sum_{i=1}^{4} 3 E_{i}-\sum_{i=5}^{7} 2 E_{i}-E_{8}$
(1) $4 H-4 E_{1}-3 E_{2}-\sum_{i=3}^{8} 2 E_{i}$
(8) $5 H-4 E_{1}-4 E_{2}-\sum_{i=3}^{6} 3 E_{i}-2 E_{7}-2 E_{8}$
(0) $6 H-5 E_{1}-\sum_{i=2}^{4} 4 E_{i}-\sum_{i=5}^{8} 3 E_{i}$
(10) $6 H-\sum_{i=1}^{6} 4 E_{i}-3 E_{7}-2 E_{8}$
(1) $7 H-\sum_{i=1}^{3} 5 E_{i}-\sum_{i=4}^{7} 4 E_{i}-3 E_{8}$
(1) $7 H-6 E_{1}-\sum_{i=2}^{8} 4 E_{i}$
(3) $8 H-6 E_{1}-\sum_{i=2}^{6} 5 E_{i}-4 E_{7}-4 E_{8}$
(44) $9 H-\sum_{i=1}^{4} 6 E_{i}-\sum_{i=5}^{8} 5 E_{i}$
(15) $10 H-7 E_{1}-\sum_{i=2}^{8} 6 E_{i}$

Dimensionality for X_{n+3}^{n} and X_{7}^{3}

Theorem (Brambilla, Dumitrescu, Laface, P, Santana Sánchez)
For $X=X_{n+3}^{n}$ or $X=X_{7}^{3}$, then

- the special effect varieties are all and only the above Weyl cycles.
- the dimension formula is

$$
h^{0}(D):=\chi(D)+\sum_{h^{\prime}(0)}^{\sum_{\text {Wall ayceos }}(-1)^{r+1}\binom{n+\operatorname{multw}(D)-\widetilde{\operatorname{dim}(W)-1}}{n} .}
$$

Open core: x_{8}^{4}

Chamber decompositions of the effective cone of divisors If X_{s}^{n} is a MDS, then $\operatorname{Eff}(X)_{\mathbb{R}}$ and $\operatorname{Mov}(X)_{\mathbb{R}}$ are closed polyhedral cones, and $\operatorname{Mov}(X)_{\mathbb{R}}$ has finite ne chamber decomposition.

Chamber decompositions of the effective cone of divisors

Lemma (Brambilla, Dumitrescu, P)
For $X=X_{s}^{n} M D S$, if W is a Weyl cycle, then

$$
m u l t_{w}(D)=\max \left\{0,-D \cdot \gamma_{w}\right\}
$$

for $\left(\exists!\gamma_{W}\right.$ in $N_{1}(X)_{\mathbb{R}}$ that sweeps out W.
Theorem (Mukai; Casagrande-Codogni-Fanelli; B-D-P-S)
For $X=X_{n+3}^{n}$ and for $X=X_{8}^{4}$, the hyperplane arrangement in $N^{1}(X)_{\mathbb{R}}$:

$$
\bigcup_{i}\left\{m_{i}=0\right\} \cup \bigcup_{W}\left\{D \cdot \gamma_{W}=0\right\}
$$

induce the Mori chamber decomposition (and the stable base locus decomposition).

