Categorified Beauville-Coszle \& retted problems
joint with Federico Binda (ar Xiv:2107.03914v2)
O. Introduction \& motivations
$X=a$ scheme
$\operatorname{Br}(x):=H_{e t t}^{2}\left(x ; F_{m}\right)$ the cohomological Braver group of X

It is a fundamental arithmetic and algebro-geometric invariant of X :

- it measures obstructions to Hasse principles for existence of rational points;
- it is a birational invariant mas examples of uniational varieties that are not rational

Deal with $\operatorname{Br}(x)$? Fundamental idea (Grothendieck): look at the table

Goal of this work: exploit Toën's viewpoint to improve our Knowledge of $\mathrm{Bz}(x)$.
2 main applications:
\rightarrow to formal GAGA situation
\longrightarrow to Beawville-lostlo situation $m>$ openings to a burger research program

Plan of the talk:

1. Review of derived Azumaya algebras
2. Review of categorical sheaves
3. Formal GAGA setup
4. Beauville-Lastlos sup
5. Azumaya algebras \& their derived counterparts

Def. X a scheme.

1) A sheaf of Azumaya algebras is a pair $A=(V, m)$, where
(i) V is a vector bundle on X
(ii) $m: V \otimes_{\theta_{x}} V \rightarrow V$ is an associative multiplication not commutative

Moreover, we require that the canonical map Azum. multipl.

$$
V \otimes V^{o p} \rightarrow \operatorname{Han}_{\theta_{x}}(v, v) \quad\left(b, b^{\prime}\right) \longmapsto\left[c \longmapsto b c b^{\prime}\right]
$$

to be an isomorphism
2) Two sheaves of Azumaya algebras A_{1}, A_{2} are said to be Morita equivalact if there exists an θ_{x}-linear equivalence $A_{1}-\operatorname{Mad}_{\text {od }} \simeq A_{2}$ - Mod

Examples 1) θ_{x} is Azumaya Over $X=S_{\text {per }}\left(\mathbb{Z}_{(p)}\right)$,

$$
\begin{aligned}
& A_{a, b}=\mathbb{Z}_{(p)}\langle i, j, k\rangle /\left(i^{2}-a, j^{2}-b, i j-k, j i+k\right) \\
& \text { algebra. } \left.\quad \operatorname{Mod} \underset{n \times n}{ } \simeq \operatorname{Mod}_{n}\right) O_{x}
\end{aligned}
$$

is an Azumaya algebra.
3) A is Morita equivalent to $\theta_{x} \Longleftrightarrow A \simeq M_{n \times n}\left(\theta_{x}\right) \simeq \operatorname{End}\left(\theta_{x}^{n}\right)$ son as alg.
Notation: $\operatorname{Br}_{A_{z}}(x):=\{$ Azumaya algebras on $x\}$ /Mort al equiv.
Tensor product mokes $B r_{A z}(x)$ into a group. $A \otimes B$ is soil Azumayo it $A \& B$. are

An extra example:
4) The s.e.s. of etale sheaves

$$
0 \rightarrow G_{m} \rightarrow G L_{n+1} \longrightarrow P G L_{n} \longrightarrow 0
$$

gives rise to $H_{i t}^{1}\left(x ; P G L_{n}\right) \xrightarrow{\delta} H_{e t t}^{2}\left(x ; \sigma_{m}\right)$.
In fact, it factors through $\operatorname{Br}_{A_{z}}(x)$.

Facts: 1) Étale locally, every Azumaya algebra is Morita trivial "Azumaya alg. are twisted forms of matrix algebras"
2) \exists injective map $\operatorname{Br}_{\mathrm{A}_{z}}(x) \stackrel{i}{\longleftrightarrow} \operatorname{Br}(x)$
3) The image of i is contained in $\operatorname{Br}(x)_{\text {tors }}$
4) (Mumford) \exists normal surface 5 st. $\operatorname{Br}(S) / \operatorname{Br}(S)_{\text {tors }} \neq 0$
mo \exists classes in the Braver group not representable by Azumayo algebras!

Rm. $H_{e f}^{1}\left(x ; \xi_{m}\right) \simeq \operatorname{Pic}(x)$

Thy (Toen)

Every class in $\operatorname{Br}(X)$ is representable by a derived Azumaya algebra.
is great becsuse we know how to manipulate line bundles!

Def. X a scheme.

1) A sheaf of derived Azumaya algebras is an object $A \in A l g(\operatorname{Paf}(x))$ such that:
(i) A is supported everywhere; \qquad $V_{0} \otimes V_{0} \longrightarrow V_{0}$ associative mu lt.
(ii) the canonical map in complexes of $v . b$.

$$
x=\mathbb{A}^{1} \quad V=\left(k[T] I_{k}[T]\right) \in \operatorname{Pa} f\left(\mathbb{A}^{\prime}\right)
$$

$H^{i}(v)$ supp. just on 0

$$
n[T]-T^{2} k[T] \text { complex }
$$

is a guari-isomarplism.
2) Two sheaves of derived Azumaya algebras A_{1}, t_{2} are derived equivalent if

$$
\exists \text { a } \theta_{x} \text { - linear equivalence } A_{1}-d g M_{0} \simeq A_{2} \text {-dg } \operatorname{Mod}
$$

$$
\operatorname{Ch}\left(\theta_{x}\right)=\text { chain complexes in } \operatorname{PCh}(x)
$$

$$
A_{1} \in \operatorname{Alg}\left(C h\left(\theta_{x}\right)\right) \quad \operatorname{teod}_{A_{1}}\left(C h\left(\theta_{x}\right)\right)\left[\begin{array}{l}
11 \\
W_{\text {pis. }}^{-1}
\end{array}\right]
$$

Remark. Toën's the + Mumford example \Rightarrow existence of derived Azumay
are not classic

It's earier to produce derived Azumizya algebras from the cotegorified viewpoint.

Cor. (Toën) ヨacin. Surg. map
Notation: $\operatorname{dBr}(x):=\left\{\begin{array}{c}\text { derived Azumaya } \\ \text { algebras }\end{array}\right\}$ /derived Morita

$$
\begin{gathered}
\quad d B_{r}(x) \longrightarrow \operatorname{Br}(x) \\
11 T h m \\
H_{j-1}^{2}\left(x ; \sigma_{m}\right) \oplus H_{e f t}^{\prime}(x ; y) \cong 0 \text { if } x \text { is normal }
\end{gathered}
$$

2. Categorical sheaves

Notation \& conventions

- All categories are ∞-categories (think of thing. categories but better!)
- $P_{2},^{\omega}=$ presentable so-cotegorias generated by comport objects Morphisms: left adjoints that preserve Compare objects

Present. $=$ describable was generators \& relation.
Ex. X top. spouse

$$
F: \varepsilon-D \longrightarrow \varepsilon
$$

$\forall e F(c,-)$ comm. withalim $\operatorname{PSh}(x)$ free category

Examples to forge intuition:

1) $\operatorname{PSh}\left(e_{0}\right) \otimes \operatorname{PSh}\left(D_{0}\right) \simeq \operatorname{PSh}\left(e_{0} \times D_{0}\right) \quad e \in \stackrel{m}{\longrightarrow} e$

2) X a gags scheme. $\left.D(x) \in \subset A \lg \left(P_{2} L, w\right) \quad 3 \frac{1}{2}\right) \operatorname{Mod} \operatorname{cat}$ pres. $\otimes_{A}: \operatorname{Mod} \times \operatorname{Mod} \rightarrow \operatorname{Mod} \rightarrow A$ ${ }^{\imath}$ cotegocifies O_{x} bicontinous.

Def. X a gags scheme. Categorical qussi-cherent sheaves: $=P_{x}^{L} L_{x}:=\operatorname{Mod}_{D(x)}\left(R^{L_{N}}\right)$
Remarks \& examples structure

1) Action of $D(x) \equiv$ action of θ_{x} (categorification)

$$
D(x) \otimes D(y) \longrightarrow D(y)
$$

3) The above definition is "cheating": unclear why these are sheaves.

They are though (this of Toën \& Lurie), and the above definition is equivalent to a more sophisticated one (thy of Gaitsgory).

Thy (Toes)
X gags scheme. Write:

$$
\begin{aligned}
P_{i c}(x) & \longleftrightarrow \operatorname{QCoh}^{2}(x)(x)-\text { inv. sheaves } \\
d A_{x}^{\operatorname{cod}} & \longrightarrow P_{x}^{L, w}
\end{aligned}
$$

- $d A z_{x}^{\text {at }}=$ full subcategory of $P_{2}^{L, w}$ spanned by \otimes-invertible objects
- $d A z_{x}=$ maximal ∞-groupaid in $d A z_{x}^{\text {cot }}$.

$$
\begin{aligned}
& \operatorname{Sh}(x)<a \text { quotient } \\
& \text { of a free cost. } \\
& \text { Mod generated by } A \\
& F_{u n} L(C \otimes D, \varepsilon)^{\text {def. }} \cong F_{u n}^{L \times L}(\varphi \times D, \varepsilon)^{\forall d F(-, d) / m n} \operatorname{Sh}(x)^{\forall c} \text { of a free cost. } \\
& e \otimes D \stackrel{\text { The }}{\simeq} F_{u n} R\left(e^{\circ p}, D\right)
\end{aligned}
$$

Then $d A z_{x}$ is a simplicial set and moreover:

$$
\pi_{0}\left(d A_{z_{x}}\right) \simeq d B_{r}(x) \simeq H_{i t}^{2}\left(x ; G_{m}\right) \times H_{i t}^{1}(x ; \pi)
$$

$$
\pi_{2}\left(d A z_{x}\right) \simeq H^{0}\left(x_{j} \Phi_{m}\right)
$$

$$
\begin{aligned}
& \quad(2,[n])^{\text {shift }} \\
& \pi_{1}\left(d A z_{x}\right) \simeq d P_{i c}(x) \simeq H_{e t}^{\prime}\left(x ; \sigma_{m}\right) \times H_{e \hat{e t}}^{0}(x ; \pi) \\
& \pi_{i}\left(d A z_{x}\right) \simeq 0 \quad \forall i \geqslant 3
\end{aligned}
$$

3. Formal GAGA setup

Setup:

- $S=\operatorname{Spec}(A),(A, m)$ complete local ling $\mathbb{C}[I T]$
- $X \rightarrow S$ a proper scheme / S
- $S_{n}=S_{p \mu}\left(A / m^{n+1}\right), X_{n}=S_{n} x_{s} X$
- $X=$ colim X_{n} formal completion of X at the special fiber

$$
P_{i c}(x) \simeq \lim P_{i c}\left(x_{n}\right)
$$

Fact: GrothendiecK's existence the $\Rightarrow H_{i t}^{1}\left(x ; \Phi_{m}\right) \simeq \lim _{n} H_{i t}^{1}\left(x_{n} ; G_{m}\right)$
Question: what about $H_{i t}^{2}\left(x ; 屯_{m}\right)$?

The (Grothendieck)
Assume that:
2) X is regular and flat in addition to proper $/ s$;
3) $\lim _{n}{ }^{1} \operatorname{Pic}\left(x_{n}\right)=0$.

Then $H_{e t}^{2}\left(x ; \sigma_{m}\right) \longrightarrow \lim _{n} H_{e t}^{2}\left(x ; \sigma_{m}\right)$ is infective.

Def. $H_{e t}^{2}\left(\mathcal{X} ; \sigma_{m}\right):=H^{2}\left(\lim _{n} R T_{e t}\left(x_{n} ; G_{m}\right)\right)$
The (Bind - P.)
Assume that:

1) A complete local ring;
2) x proper $/ \mathrm{s}$
$\left(f_{n}\right) \longrightarrow\left(\mathscr{I}_{n}-\left.\mathcal{I}_{n+1}\right|_{x_{n}}\right)$

Then:

1) the $\operatorname{map} H_{e t t}^{2}\left(X ; G_{m}\right) \rightarrow H_{e t}^{2}\left(Z ; G_{m}\right)$ is injeutive;
2) there exists a s.e.s.:

$$
H_{\text {et }}^{2}\left(x ; F_{m}\right) \text { target map }
$$

$$
0 \rightarrow \lim _{n}^{1} P_{i c}\left(x_{n}\right) \rightarrow H_{e t}^{2}\left(\not X_{i} ; \sigma_{m}\right) \rightarrow \lim _{n} H_{i t}^{2}\left(x_{n} ; F_{m}\right) \rightarrow 0
$$

Recovers and strengthens all previously known results. It follows from:

Thu (Binda-P.)

In the above setting the map

$$
P_{L}^{L, w} \longrightarrow \lim _{n} P_{X_{n}}^{L, w}
$$

is fully faithful on dualizable objects P invertible object =Azumaya.

Corollary (Binda - P.)

$$
A \simeq X \times B G_{m}{ }^{\text {locally }}
$$

In the above setting, let $A \rightarrow X$ be a F_{m}-gerbe.
Then the canonical map
not proper

$$
\operatorname{Pef}(A) \longrightarrow \lim _{n} \operatorname{Pef}\left(A_{n}\right)
$$

is an equivalence.

This also goes beyond existing literature: Combining results of Ryalh, hall, Totaro, Vistoli et al., this was only known for G-gerbes that are global quotients!
4. Beauville-laszlo setup

Setup (simplified)
A: Noetherian commutative ring
ICA ideal

Significant example:

$$
\begin{aligned}
& A=\mathbb{C}[T] \\
& I=(T) \\
& \mathbb{C}((T)) \longleftarrow \mathbb{C}\left[T, T^{-1}\right] \\
& \uparrow \quad \mathbb{C}[T]
\end{aligned}
$$

The (Beauville-loszl, Lorie)
The comovical mop

$$
\operatorname{Vect}(\mathbb{C}[T])=\operatorname{Vat}(\mathbb{C}(T T)) \times \operatorname{Vect}\left(\mathbb{C}\left[T, T^{-1}\right]\right)
$$

$\operatorname{Thm}_{m}\left(B_{i n d}-P.\right)$
The canonical map
iss. Sort is tomahow surprising

Rmk. Ell faith, is easy
 symm.man. objects
Consequences:

1) (Easy) \exists long exact sequence

$$
\begin{aligned}
& 0 \rightarrow \theta(s)^{x} \rightarrow \theta(u)^{x} \oplus \theta(T)^{x} \rightarrow \theta(v)^{x} \\
& \qquad d \operatorname{Pic}(s) \rightarrow d \operatorname{Pic}(u) \oplus d \operatorname{Pic}(T) \rightarrow d \operatorname{Pic}(v) \\
& d \operatorname{Br}(s) \rightarrow d \operatorname{Br}(u) \oplus d \operatorname{Br}(T) \rightarrow d \operatorname{Br}(v)
\end{aligned}
$$

2) (Ongoing) Adelic descent

Basic ides: x is a curve
1 KTh . Toèn $d A_{x} \times$ What does it mean?
X gees schemer.

$$
e \in P_{X} L, \omega=\operatorname{Mod}_{D(x)}\left(P_{2} L, n\right)
$$

Thu (Toèn) If C is invertible
then $\exists E \in E$ such that $\varepsilon \simeq \operatorname{Mod}_{E_{n d}}(D(E))$
$+\operatorname{End}_{e} d(E) \in D(x)$ is Azumayal

$$
\begin{array}{ll}
\text { Thin (Weill) } & \operatorname{Bun}_{G}(x) \simeq G\left(O_{x}\right) \\
\left.\operatorname{Bun}_{G}\left(\mathbb{A}_{x}\right) / \sigma\left(\mathbb{A}_{x}\right)\right]
\end{array}
$$

${ }^{G}$ completely decomposed in terms of found coupbtions at every paints of X.

To give a vector bundle m X you only need to give a vil. on each final completion + some gluing data.
Conj. $d A z(x)$ satisfies ddelic descent.
Concrete fain: $\quad d A_{z}(x) \simeq \lim _{n} d A_{z}\left(H_{x}^{\eta}\right)$
new spectral sequence computing Beiliuson higher adèles
 $\operatorname{dBr}(x)$ mos new filtration $\operatorname{dBr}(x)$

