Tom & Jerry triples and the 4-intersection unprojection formats

Vasiliki Petrotou

Hebrew University of Jerusalem

Nottingham Algebraic Geometry Seminar 17 November 2022

Notation

- 2 Unprojection review
 - Kustin-Miller unprojection
 - Parallel Kustin-Miller unprojection

3 Tom & Jerry triples

- Tom & Tom & Tom case
- 4 The 4-intersection format
- **5** Applications

6 References

Assumption: All rings are commutative and with unit.

Definition

Assume $A = [a_{ij}]$ is an $m \times m$ skewsymmetric matrix, (i.e., $a_{ii} = -a_{ii}$ and $a_{ii} = 0$) with entries in a ring R.

- If m = 2ℓ then det A = f(a_{ij})². The polynomial f(a_{ij}) is called the Pfaffian of the matrix A and is denoted by Pf(A).
- If $\mathbf{m} = 2 \ell + 1$ by Pfaffians of A we mean the set

$$\{Pf(A_1), Pf(A_2), \ldots, Pf(A_m)\},\$$

where A_i denotes the skewsymmetric submatrix of A obtained by deleting the ith row and ith column of A.

Example

 $\bullet~\mbox{For}~m=2$:

$$Pf(\begin{pmatrix} 0 & a_{12} \\ -a_{12} & 0 \end{pmatrix}) = a_{12}$$

• For m = 5:

$$Pf\left(\begin{pmatrix} 0 & a_{12} & a_{13} & a_{14} & a_{15} \\ -a_{12} & 0 & a_{23} & a_{24} & a_{25} \\ -a_{13} & -a_{23} & 0 & a_{34} & a_{35} \\ -a_{14} & -a_{24} & -a_{34} & 0 & a_{45} \\ -a_{15} & -a_{25} & -a_{35} & -a_{45} & 0 \end{pmatrix}\right) = \\ = \{Pf(A_1), Pf(A_2), \dots, Pf(A_5)\}$$

where

$$Pf(A_1) = a_{23}a_{45} - a_{24}a_{35} + a_{25}a_{34},$$

$$Pf(A_2) = a_{13}a_{45} - a_{14}a_{35} + a_{15}a_{34},$$

$$Pf(A_3) = a_{12}a_{45} - a_{14}a_{25} + a_{15}a_{24},$$

$$Pf(A_4) = a_{12}a_{35} - a_{13}a_{25} + a_{15}a_{23},$$

$$Pf(A_5) = a_{12}a_{34} - a_{13}a_{24} + a_{14}a_{23}.$$

Definition

A Noetherian local ring R is a **Gorenstein** ring if inj dim_R $R < \infty$. More generally, a Noetherian ring R is called **Gorenstein** if for every maximal ideal \mathfrak{m} of R the localization $R_{\mathfrak{m}}$ is Gorenstein.

Examples of Gorenstein rings

- The anticanonical ring $R = \bigoplus_{m \ge 0} H^0(X, \mathfrak{O}_X(-mK_X))$ of a (smooth) Fano n-fold.
- The canonical ring $R = \bigoplus_{m \ge 0} H^0(X, \mathcal{O}_X(mK_X))$ of a (smooth) regular surface of general type.
- The Stanley-Reisner ring of a simplicial sphere over any field.

Theorem

Let $R = k[x_1, ..., x_m]/I$ be the polynomial ring in *n* variables divided by a homogeneous ideal *I*.

• (Serre) If codim I = 1 or 2 then

R is Gorenstein \Leftrightarrow *I* is a complete intersection.

• (Buchsbaum-Eisenbud (1977)) If codim I = 3 then

R is Gorenstein \Leftrightarrow I is generated by the $2n \times 2n$ Pfaffians of a skewsymmetric $(2n + 1) \times (2n + 1)$ matrix with entries in $k[x_1, \ldots, x_m]$.

Question

Is there a structure theorem for codim I \geq 4 ?

- A.Kustin & M.Milller (1983) introduced a procedure which constructs more «complicated» Gorenstein rings from simpler ones by increasing codimension. This procedure is called Kustin-Miller unprojection.
- M.Reid (1995) rediscovered what was essentially the same procedure working with Gorenstein rings arising from K3 surfaces and 3-folds.

Kustin-Miller unprojection Parallel Kustin-Miller unprojection

Assumptions of Kustin-Miller unprojection:

- $\bullet \ J \subset R \ codimension \ 1 \ ideal$
- R Gorenstein
- R/J Gorenstein.

Codimension: increasing by one.

Denote by *i* the canonical injection. Under the assumptions above Reid proves that there exists ϕ such that Hom_{*R*}(*J*, *R*) is generated by *i*, ϕ as *R*-module.

Definition (M.Reid)

Unpr(J,R)= «graph of ϕ » = $\frac{R[T]}{(T\alpha - \phi(\alpha): \alpha \in J)}$

Kustin-Miller unprojection Parallel Kustin-Miller unprojection

Theorem (Kustin-Miller, Reid-Papadakis)

The ring Unpr(J,R) is Gorenstein.

Remarks

- Unpr(J,R) has typically more complicated structure than both R, R/J.
- Unpr(J,R) is useful to construct/analyse Gorenstein rings in terms of simpler ones.

Kustin-Miller unprojection Parallel Kustin-Miller unprojection

Kustin-Miller unprojection can be used many times over an inductive way to produce Gorenstein rings of arbitrary codimensions, whose properties are nevertheless controlled by just a few equations as a number of new unprojection variables are adjoined.

Applications

- Construction of new interesting algebraic surfaces and 3-folds.
- Explicit Birational Geometry. (That is, writing down explicitly varieties, morphisms and rational maps that Minimal Model Program says they exist.)
- Algebraic Combinatorics.

Kustin-Miller unprojection Parallel Kustin-Miller unprojection

Neves and Papadakis (2013) develop a theory, which is called parallel Kustin-Miller unprojection.

They set sufficient conditions on a positively graded Gorenstein ring R and a finite set of codimension 1 ideals which ensure the series of unprojections.

Furthermore, they give a simple and explicit description of the end product ring which corresponds to the unprojection of the ideals.

This theory applies when all the unprojection ideals of a series of unprojections correspond to ideals already present in the initial ring.

Assume J is a codimension 4 complete intersection ideal and M is a 5×5 skewsymmetric matrix.

Definition

- Assume 1 ≤ i ≤ 5. The matrix M is called Tom_i in J if after we delete the i-th row and i-th column of M the remaining entries are elements of the codimension 4 ideal J.
- ② Assume 1 ≤ i < j ≤ 5. The matrix M is called Jerry_{ij} in J if all the entries of M that belong to the i-th row or i-th column or j-th row or j-th column are elements of J.

Remark

In both cases the Pfaffian ideal of M is a subset of J.

Papadakis' Calculation for Tom (2004) Let $R = k[x_k, z_k, m_{ij}^k]$, where $1 \le k \le 4$, $2 \le i < j \le 5$, be a polynomial ring. Set $J = (z_1, z_2, z_3, z_4)$. Denote by

$$N = \begin{pmatrix} 0 & x_1 & x_2 & x_3 & x_4 \\ -x_1 & 0 & m_{23} & m_{24} & m_{25} \\ -x_2 & -m_{23} & 0 & m_{34} & m_{35} \\ -x_3 & -m_{24} & -m_{34} & 0 & m_{45} \\ -x_4 & -m_{25} & -m_{35} & -m_{45} & 0 \end{pmatrix},$$

where

$$m_{ij} = \sum_{k=1}^4 m_{ij}^k z_k.$$

Let I be the ideal generated by the Pfaffians P_0, P_1, P_2, P_3, P_4 of N. It holds that $I \subset J$.

Papadakis using multilinear and homological algebra calculates the equations of the codimension 4 ring which occurs as unprojection of the pair $I \subset J$.

More precisely, calculates 4 polynomials g_i for ${\rm i}=1,\ldots,4$ and defines the map ϕ by

$$\phi\colon J/I\to R/I, \ z_i+I\mapsto g_i+I.$$

Moreover, he proves that $\operatorname{Hom}_{R/I}(J/I, R/I)$ is generated as R/I-module by the inclusion map i and ϕ . From the theory it follows that the ideal

$$(P_0, P_1, P_2, P_3, P_4, Tz_1 - g_1, Tz_2 - g_2, Tz_3 - g_3, Tz_4 - g_4)$$

of the polynomial ring R[T] is Gorenstein of codimension 4.

Notation Unprojection review Tom & Jerry triples The 4-intersection format Applications References	Tom & Tom & Tom case
--	----------------------

We will now define Tom & Jerry triples.

Let

$$M = \begin{pmatrix} 0 & m_{12} & m_{13} & m_{14} & m_{15} \\ -m_{12} & 0 & m_{23} & m_{24} & m_{25} \\ -m_{13} & -m_{23} & 0 & m_{34} & m_{35} \\ -m_{14} & -m_{24} & -m_{34} & 0 & m_{45} \\ -m_{15} & -m_{25} & -m_{35} & -m_{45} & 0 \end{pmatrix}$$

be a 5×5 skewsymmetric matrix and J_1 , J_2 , J_3 be three complete intersection ideals of codimension 4.

Tom & Tom & Tom case

Definition

We say that M is a Tom₁ + Tom₂ + Tom₃ in J_1, J_2, J_3 if the entries of M satisfy the following conditions:

 $m_{12} \in J_3, m_{13} \in J_2, m_{14}, m_{15} \in J_2 \cap J_3, m_{23} \in J_1, m_{24}, m_{25} \in J_1 \cap J_3, m_{34}, m_{35} \in J_1 \cap J_2, m_{45} \in J_1 \cap J_2 \cap J_3.$

Remark

Equivalently, the matrix M is Tom₁ in J_1 , Tom₂ in J_2 and Tom₃ in J_3 .

Similarly, we set conditions in the entries of M such that M is

- Jerry_{ij} in J_1 , Jerry_{kl} in J_2 and Jerry_{mn} in J_3 .
- Tom_i in J_1 , Tom_j in J_2 and Jerry_{kl} in J_3 .
- Tom_i in J_1 , Jerry_{jk} in J_2 and Jerry_{lm} in J_3 .

We work over the polynomial ring $R = k[z_i, c_j]$, where $1 \le i \le 7$ and $1 \le j \le 25$. Denote by **Tom(1,2,3)** the following 5×5 skewsymmetric matrix

$$\begin{pmatrix} 0 & c_1z_1 + c_2z_2 + c_3z_3 + c_4z_6 & c_5z_1 + c_6z_2 + c_7z_4 + c_8z_5 & c_9z_1 + c_{10}z_2 & c_{11}z_1 + c_{12}z_2 \\ 0 & c_{13}z_2 + c_{14}z_3 + c_{15}z_5 + c_{16}z_7 & c_{17}z_2 + c_{18}z_3 & c_{19}z_2 + c_{20}z_3 \\ 0 & c_{21}z_2 + c_{22}z_5 & c_{23}z_2 + c_{24}z_5 \\ 0 & c_{25}z_2 \\ 0 & 0 \end{pmatrix}$$

which is $Tom_1+Tom_2+Tom_3$ matrix in the ideals

$$J_1 = (z_2, z_3, z_5, z_7), J_2 = (z_1, z_2, z_4, z_5), J_3 = (z_1, z_2, z_3, z_6).$$

Let I be the ideal generated by the Pfaffians of Tom(1,2,3).

Tom & Tom & Tom case

Proposition

(i) For all t with 1 ≤ t ≤ 3, the ideal J_t/I is a codimension 1 homogeneous ideal of R/I with Gorenstein quotient.
(ii) For all t, s with 1 ≤ t < s ≤ 3, it holds that

 $codim_{R/I}(J_t/I + J_s/I) = 3.$

Aim: Compution of $\phi_t : J_t/I \to R/I$ for all t with $1 \le t \le 3$.

Strategy: We combine Papadakis' Calculation for Tom_1 with the fact that a Tom_i matrix in an ideal J is related to Tom_1 matrix in the ideal J via a sequence of elementary row and column operations.

Proposition

For all t with $1 \le t \le 3$, the R/I-module $\operatorname{Hom}_{R/I}(J_t/I, R/I)$ is generated by the two elements i_t and ϕ_t .

Tom & Tom & Tom case

Proposition

For all t, s with $1 \le t, s \le 3$ and $t \ne s$, it holds that

 $\phi_s(J_s/I) \subset J_t/I.$

Proposition

For all t, s with $1 \le t, s \le 3$ and $t \ne s$, there exists a homogeneous element A_{st} such that

$$\phi_s(\phi_t(p)) = A_{st}p$$

for all $p \in J_t/I$.

Tom & Tom & Tom case

Let T_1 , T_2 , T_3 be three new variables of degree 6.

Definition

We define as I_{un} the ideal

$$(I) + (T_1z_2 - \phi_1(z_2), T_1z_3 - \phi_1(z_3), T_1z_5 - \phi_1(z_5), T_1z_7 - \phi_1(z_7),$$

$$T_2z_1 - \phi_2(z_1), T_2z_2 - \phi_2(z_2), T_2z_4 - \phi_2(z_4), T_2z_5 - \phi_2(z_5),$$

$$T_3z_1 - \phi_3(z_1), T_3z_2 - \phi_3(z_2), T_3z_3 - \phi_3(z_3), T_3z_6 - \phi_3(z_6),$$

$$T_1T_2 - A_{12}, T_1T_3 - A_{13}, T_2T_3 - A_{23})$$

of the polynomial ring $R[T, S, W]$. We set $R_{un} = R[T, S, W]/I_{un}$.

Tom & Tom & Tom case

Proposition

The homogeneous ideal I_{un} is a codimension 6 ideal with a minimal generating set of 20 elements.

Theorem (P.)

The ring R_{un} is Gorenstein.

Assume that J is a fixed codimension 3 complete intersection ideal.

Question

Define a codimension 2 complete intersection ideal I such that I is a subset of J.

One answer on this Question is given by the following computation.

Papadakis' Calculation for Unprojection of a complete intersection inside a complete intersection, (2004) Let $R = k[a_i, b_i, x_j]$, where $1 \le i \le 3$ and $j \in \{1, 3, 5\}$ be the standard graded polynomial ring. Fix $J = (x_1, x_3, x_5)$. Denote by A the following 2×3 matrix

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$

and by A_i the 2 × 2 submatrix of A which is obtained by removing the ith column.

Consider the ideal $I = (a_1x_1 + a_2x_3 + a_3x_5, b_1x_1 + b_2x_3 + b_3x_5)$ of *R*. It holds that $I \subset J$.

Denote by h_i for i = 1...3, the polynomial which is equal to the determinant of the submatrix A_i and define the map ϕ by

 $\phi\colon J/I\to R/I,$

 $\phi(x_1 + I) = h_1 + I$, $\phi(x_3 + I) = -h_2 + I$, $\phi(x_5 + I) = h_3 + I$

Papadakis proved that $\operatorname{Hom}_{R/I}(J/I, R/I)$ is generated as R/I-module by the inclusion map i and ϕ . From the theory it follows that the ideal

$$I + (Tx_1 - h_1, Tx_3 - (-h_2), Tx_5 - h_3)$$

of the polynomial ring R[T] is Gorenstein of codimension 3.

Let J_1 , J_2 , J_3 , J_4 be four codimension 3 complete intersection ideals and I is a codimension 2 complete intersection ideal.

Definition

We say that *I* is a 4-intersection ideal with respect to the ideals J_1, J_2, J_3, J_4 if *I* is subset of each of the ideals J_1, J_2, J_3, J_4 .

An example of a 4-intersection unprojection format is the following: We work over the standard graded polynomial ring $R = k[c_i, x_i]$, where $1 \le i \le 6$. We set

$$I_{1234} = (c_1x_1x_2 + c_2x_3x_4 + c_3x_5x_6, c_4x_1x_2 + c_5x_3x_4 + c_6x_5x_6).$$

Then, I_{1234} is a 4-intersection ideal in the ideals

$$J_1 = (x_1, x_3, x_5), J_2 = (x_1, x_4, x_6), J_3 = (x_2, x_3, x_6), J_4 = (x_2, x_4, x_5).$$

We proved that this initial data satisfies the conditions for parallel Kustin-Miller unprojection.

For all t, with $1 \le t \le 4$, denote by $i_t : J_t/I_{1234} \to R/I_{1234}$ the inclusion map.

Aim: Definition of $\phi_t : J_t/I_{1234} \to R/I_{1234}$ for all t with $1 \le t \le 4$.

Strategy: We combine Papadakis' Calculation for a complete intersection *I* inside a complete intersection *J* with the fact that I_{1234} is a complete intersection in J_t .

Let T_1, T_2, T_3, T_4 be four new variables of degree 3.

Definition

We define as $I_{\mu\nu}$ the ideal $(I) + (T_1x_1 - \phi_1(x_1), T_1x_3 - \phi_1(x_3), T_1x_5 - \phi_1(x_5), T_2x_1 - \phi_2(x_1),$ $T_{2}x_{4}-\phi_{2}(x_{4}), T_{2}x_{6}-\phi_{2}(x_{6}), T_{3}x_{2}-\phi_{3}(x_{2}), T_{3}x_{3}-\phi_{3}(x_{3}), T_{3}x_{6}-\phi_{3}(x_{6}),$ $T_4x_2-\phi_4(x_2), T_4x_4-\phi_4(x_4), T_4x_5-\phi_4(x_5), T_2T_1-A_{21}, T_3T_1-A_{31},$ $T_4 T_1 - A_{41}, T_3 T_2 - A_{32}, T_4 T_2 - A_{42}, T_4 T_3 - A_{43})$ of the polynomial ring $R[T_1, T_2, T_3, T_4]$. We set $\overline{R_{\mu n}} = R[T_1, T_2, T_3, T_4] / \overline{I_{\mu n}}.$

Theorem (P., 2021)

 $\overline{I_{un}}$ is a codimension 6 Gorenstein ideal with 20 generators.

Applications using Tom & Jerry triples unprojection format

We now give two applications of the construction of R_{un} .

Theorem (P.)

There exists a family of quasismooth, projectively normal and projectively Gorenstein Fano 3-folds $X \subset \mathbb{P}(1^3, 2^7)$, nonsingular away from eight quotient singularities $\frac{1}{2}(1, 1, 1)$, with Hilbert series of the anticanonical ring

$$\frac{1-20t^4+64t^6-90t^8+64t^{10}-20t^{12}+t^{16}}{(1-t)^3(1-t^2)^7}$$

Theorem (P.)

There exists a family of quasismooth, projectively normal and projectively Gorenstein Fano 3-folds $X \subset \mathbb{P}(1^3, 2^5, 3^2)$, nonsingular away from four quotient singularities $\frac{1}{2}(1, 1, 1)$, and two quotient singularities $\frac{1}{3}(1, 1, 2)$, with Hilbert series of the anticanonical ring

$$\frac{1-11t^4-8t^5+23t^6+32t^7-13t^8-48t^9-13t^{10}+32t^{11}+23t^{12}-8t^{13}-11t^{14}+t^{18}}{(1-t)^3(1-t^2)^5(1-t^3)^2}$$

Construction of the first family:

Denote by $k = \mathbb{C}$ the field of complex numbers. Let R_{un} be the ring and I_{un} the ideal which were defined above. Substitute the variables (c_1, \ldots, c_{25}) with a general element of k^{25} . \hat{R}_{un} : the ring which occurs from R_{un} after this substitution. \hat{I}_{un} : the ideal which obtained by the ideal I_{un} after this substitution. In what follows we set

degree
$$z_i$$
 = degree T_1 = degree T_2 = degree T_3 = 2,

for all *i* with $1 \le i \le 7$. Since R_{un} is Gorenstein, Proj $\hat{R}_{un} \subset \mathbb{P}(2^{10})$ is a projectively Gorenstein 3-fold.

Let $A = k[w_1, w_2, w_3, z_1, z_2, z_3, z_5, T_1, T_2, T_3]$ be the polynomial ring over k with w_1, w_2, w_3 variables of degree 1. Consider the graded k-algebra homomorphism

$$\psi \colon \hat{R}_{un}[T_1, T_2, T_3] \to A$$

with

$$\psi(z_1) = z_1, \quad \psi(z_2) = z_2, \quad \psi(z_3) = z_3, \quad \psi(z_4) = f_1,$$

$$\psi(z_5) = z_5, \quad \psi(z_6) = f_2, \quad \psi(z_7) = f_3, \quad \psi(T_1) = T_1,$$

$$\psi(T_2) = T_2, \quad \psi(T_3) = T_3$$

where

$$f_1 = l_1 z_1 + l_2 z_2 + l_3 z_3 + l_4 z_5 + l_5 T_1 + l_6 T_2 + l_7 T_3 + l_8 w_1^2 + l_9 w_1 w_2 + l_{10} w_1 w_3 + l_{11} w_2^2 + l_{12} w_2 w_3 + l_{13} w_3^2,$$

$$f_{2} = l_{14}z_{1} + l_{15}z_{2} + l_{16}z_{3} + l_{17}z_{5} + l_{18}T_{1} + l_{19}T_{2} + l_{20}T_{3} + l_{21}w_{1}^{2} + l_{22}w_{1}w_{2} + l_{23}w_{1}w_{3} + l_{24}w_{2}^{2} + l_{25}w_{2}w_{3} + l_{26}w_{3}^{2},$$

 $f_3 = l_{27}z_1 + l_{28}z_2 + l_{29}z_3 + l_{30}z_5 + l_{31}T_1 + l_{32}T_2 + l_{33}T_3 + l_{34}w_1^2 + l_{35}w_1w_2 + l_{36}w_1w_3 + l_{37}w_2^2 + l_{38}w_2w_3 + l_{39}w_3^2$

and $(l_1, \ldots, l_{39}) \in k^{39}$ are general.

Denote by Q the ideal of the ring A generated by the subset $\psi(\hat{I}_{un})$. Let $X = V(Q) \subset \mathbb{P}(1^3, 2^7)$. Then X is a codimension 6 projectively Gorenstein 3-fold.

Proposition

The ring A/Q is an integral domain.

Proposition

Consider $X = V(Q) \subset \mathbb{P}(1^3, 2^7)$. Denote by $X_{cone} \subset \mathbb{A}^{10}$ the affine cone over X. The scheme X_{cone} is smooth outside the vertex of the cone.

Proposition

Consider the singular locus $Z = V(w_1, w_2, w_3)$ of the weighted projective space $\mathbb{P}(1^3, 2^7)$. The intersection of X with Z consists of exactly eight points which are quotient singularities of type $\frac{1}{2}(1, 1, 1)$ for X.

Proposition

The minimal graded resolution of A/Q as A-module is equal to

$$0 \rightarrow A(-16) \rightarrow A(-12)^{20} \rightarrow A(-10)^{64} \rightarrow A(-8)^{90} \rightarrow A(-6)^{64}$$

$$ightarrow A(-4)^{20}
ightarrow A$$

Moreover, the canonical module of A/Q is isomorphic to (A/Q)(-1) and the Hilbert series of A/Q as graded A-module is equal to

$$\frac{1-20t^4+64t^6-90t^8+64t^{10}-20t^{12}+t^{16}}{(1-t)^3(1-t^2)^7}.$$

Application using 4-intersection unprojection format

As an application of the construction of R_{un} we proved the following theorem.

Theorem (P.)

There exists a family of quasismooth, projectively normal and projectively Gorenstein Fano 3-folds $X \subset \mathbb{P}(1^8, 2, 3)$, nonsingular away from eight quotient singularities $\frac{1}{3}(1, 1, 2)$, with Hilbert series of the anticanonical ring

$$\frac{1-6t^2+15t^4-20t^6+15t^8-6t^{10}+t^{12}}{(1-t)^8(1-t^2)(1-t^3)}$$

References:

- S. ALTINOK, Graded rings corresponding to polarised K3 surfaces and Q-Fano 3-folds. *Univ. of Warwick Ph.D. thesis*, 1998. vii+93 *pp*.
- S. ALTINOK, G. BROWN AND M.REID, Fano 3-folds, K3 surfaces and graded rings. *Topology and geometry:* commemorating SISTAG, 25–53, Contemp. Math., 314, Amer. Math. Soc., Providence, RI, 2002.
- G. BROWN, Graded ring database homepage, *Online* searchable database, available at http://www.grdb.co.uk/.
- G. BROWN, M. KERBER AND M. REID, Fano 3-folds in codimension 4, Tom and Jerry, Part I. *Compos. Math.* 148 (2012), 1171–1194.

- D. BUCHSBAUM AND D. EISENBUD, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. *Amer. J. Math.* 99 (1977), 447 485.
- A. CORTI, A. PUKHLIKOV AND M. REID, Fano 3-fold hypersurfaces. *Explicit birational geometry of 3-folds*, 175–258, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000.
- A. KUSTIN AND M. MILLER, Constructing big Gorenstein ideals from small ones. *J. Algebra.* 85 (1983), 303–322.
- J. NEVES AND S. A. PAPADAKIS, Parallel Kustin-Miller unprojection with an application to Calabi–Yau geometry. *Proc. Lond. Math. Soc. (3)* 106 (2013), 203–223.

- S. A. PAPADAKIS, Kustin-Miller unprojection with complexes. *J. Algebraic Geom.* 13 (2004). 249–268.
- S. A. PAPADAKIS AND M. REID, Kustin-Miller unprojection without complexes. J. Algebraic Geom. 13 (2004), 563–577.
- V. PETROTOU, Tom & Jerry triples with an application to Fano 3-folds. *Commun. Algebra 50* (2022), 3960–3977.
- M. REID, Graded Rings and Birational Geometry. *Proc. of algebraic symposium (Kinosaki, Oct 2000)*, 1–72, 2000.

Thank you!!!