Tom \& Jerry triples and the 4-intersection unprojection formats

Vasiliki Petrotou

Hebrew University of Jerusalem
Nottingham Algebraic Geometry Seminar
17 November 2022
(1) Notation
(2) Unprojection review

- Kustin-Miller unprojection
- Parallel Kustin-Miller unprojection
(3) Tom \& Jerry triples
- Tom \& Tom \& Tom case
(4) The 4-intersection format
(5) Applications
(6) References

Assumption: All rings are commutative and with unit.

Definition

Assume $A=\left[a_{i j}\right]$ is an $m \times m$ skewsymmetric matrix, (i.e., $a_{j i}=-a_{i j}$ and $a_{i i}=0$) with entries in a ring R.

- If $\mathbf{m}=\mathbf{2} \ell$ then $\operatorname{det} A=f\left(a_{i j}\right)^{2}$.

The polynomial $f\left(a_{i j}\right)$ is called the Pfaffian of the matrix A and is denoted by $\operatorname{Pf}(A)$.

- If $\mathbf{m}=\mathbf{2} \ell+\mathbf{1}$ by Pfaffians of A we mean the set

$$
\left\{\operatorname{Pf}\left(A_{1}\right), \operatorname{Pf}\left(A_{2}\right), \ldots, \operatorname{Pf}\left(A_{m}\right)\right\}
$$

where A_{i} denotes the skewsymmetric submatrix of A obtained by deleting the ith row and ith column of A.

Example

- For $\mathbf{m}=\mathbf{2}$:

$$
\operatorname{Pf}\left(\left(\begin{array}{cc}
0 & a_{12} \\
-a_{12} & 0
\end{array}\right)\right)=a_{12}
$$

- For $\mathbf{m}=\mathbf{5}$:

$$
\begin{gathered}
\operatorname{Pf}\left(\left(\begin{array}{ccccc}
0 & a_{12} & a_{13} & a_{14} & a_{15} \\
-a_{12} & 0 & a_{23} & a_{24} & a_{25} \\
-a_{13} & -a_{23} & 0 & a_{34} & a_{35} \\
-a_{14} & -a_{24} & -a_{34} & 0 & a_{45} \\
-a_{15} & -a_{25} & -a_{35} & -a_{45} & 0
\end{array}\right)\right)= \\
=\left\{\operatorname{Pf}\left(A_{1}\right), \operatorname{Pf}\left(A_{2}\right), \ldots, \operatorname{Pf}\left(A_{5}\right)\right\}
\end{gathered}
$$

where

$$
\begin{aligned}
& \operatorname{Pf}\left(A_{1}\right)=a_{23} a_{45}-a_{24} a_{35}+a_{25} a_{34}, \\
& \operatorname{Pf}\left(A_{2}\right)=a_{13} a_{45}-a_{14} a_{35}+a_{15} a_{34}, \\
& \operatorname{Pf}\left(A_{3}\right)=a_{12} a_{45}-a_{14} a_{25}+a_{15} a_{24}, \\
& \operatorname{Pf}\left(A_{4}\right)=a_{12} a_{35}-a_{13} a_{25}+a_{15} a_{23}, \\
& \operatorname{Pf}\left(A_{5}\right)=a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23} .
\end{aligned}
$$

Definition

A Noetherian local ring R is a Gorenstein ring if $\operatorname{inj} \operatorname{dim}_{R} R<\infty$. More generally, a Noetherian ring R is called Gorenstein if for every maximal ideal \mathfrak{m} of R the localization $R_{\mathfrak{m}}$ is Gorenstein.

Examples of Gorenstein rings

- The anticanonical ring $R=\bigoplus_{m \geq 0} H^{0}\left(X, \Theta_{X}\left(-m K_{X}\right)\right)$ of a (smooth) Fano n-fold.
- The canonical ring $R=\bigoplus_{m \geq 0} H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right)$ of a (smooth) regular surface of general type.
- The Stanley-Reisner ring of a simplicial sphere over any field.

Theorem

Let $R=k\left[x_{1}, \ldots, x_{m}\right] / l$ be the polynomial ring in n variables divided by a homogeneous ideal I.

- (Serre) If codim I = $\mathbf{1}$ or 2 then
R is Gorenstein $\Leftrightarrow I$ is a complete intersection.
- (Buchsbaum-Eisenbud (1977)) If codim $I=3$ then
R is Gorenstein $\Leftrightarrow I$ is generated by the $2 n \times 2 n$ Pfaffians of a skewsymmetric $(2 n+1) \times(2 n+1)$ matrix with entries in $k\left[x_{1}, \ldots, x_{m}\right]$.

Question

Is there a structure theorem for codim I ≥ 4 ?

- A.Kustin \& M.Miller (1983) introduced a procedure which constructs more «complicated» Gorenstein rings from simpler ones by increasing codimension. This procedure is called Kustin-Miller unprojection.
- M.Reid (1995) rediscovered what was essentially the same procedure working with Gorenstein rings arising from K3 surfaces and 3-folds.

Assumptions of Kustin-Miller unprojection:

- $\mathrm{J} \subset \mathrm{R}$ codimension 1 ideal
- R Gorenstein
- R/J Gorenstein.

Codimension: increasing by one.

Denote by i the canonical injection.
Under the assumptions above Reid proves that there exists ϕ such that $\operatorname{Hom}_{R}(J, R)$ is generated by i, ϕ as R-module.

Definition (M.Reid)

$\operatorname{Unpr}(\mathbf{J}, \mathbf{R})=«$ graph of $\phi »=\frac{R[T]}{(T \alpha-\phi(\alpha): \alpha \in J)}$

Theorem (Kustin-Miller, Reid-Papadakis)

The ring Unpr(J,R) is Gorenstein.

Remarks

- Unpr(J,R) has typically more complicated structure than both R, R/J.
- Unpr(J,R) is useful to construct/analyse Gorenstein rings in terms of simpler ones.

Kustin-Miller unprojection can be used many times over an inductive way to produce Gorenstein rings of arbitrary codimensions, whose properties are nevertheless controlled by just a few equations as number of new unprojection variables are adjoined.

Applications

- Construction of new interesting algebraic surfaces and 3-folds.
- Explicit Birational Geometry.
(That is, writing down explicitly varieties, morphisms and rational maps that Minimal Model Program says they exist.)
- Algebraic Combinatorics.

Neves and Papadakis (2013) develop a theory, which is called parallel Kustin-Miller unprojection.

They set sufficient conditions on a positively graded Gorenstein ring R and a finite set of codimension 1 ideals which ensure the series of unprojections.

Furthermore, they give a simple and explicit description of the end product ring which corresponds to the unprojection of the ideals.

This theory applies when all the unprojection ideals of a series of unprojections correspond to ideals already present in the initial ring.

Assume J is a codimension 4 complete intersection ideal and M is a 5×5 skewsymmetric matrix.

Definition

(1) Assume $1 \leq i \leq 5$. The matrix M is called $T_{i} m_{i}$ in J if after we delete the i-th row and i-th column of M the remaining entries are elements of the codimension 4 ideal J.
(2) Assume $1 \leq i<j \leq 5$. The matrix M is called Jerry ${ }_{i j}$ in J if all the entries of M that belong to the i-th row or i-th column or j -th row or j -th column are elements of J.

Remark

In both cases the Pfaffian ideal of M is a subset of J.

Papadakis' Calculation for Tom (2004)

Let $R=k\left[x_{k}, z_{k}, m_{i j}^{k}\right]$, where $1 \leq k \leq 4,2 \leq i<j \leq 5$, be a polynomial ring. Set $J=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$. Denote by

$$
N=\left(\begin{array}{ccccc}
0 & x_{1} & x_{2} & x_{3} & x_{4} \\
-x_{1} & 0 & m_{23} & m_{24} & m_{25} \\
-x_{2} & -m_{23} & 0 & m_{34} & m_{35} \\
-x_{3} & -m_{24} & -m_{34} & 0 & m_{45} \\
-x_{4} & -m_{25} & -m_{35} & -m_{45} & 0
\end{array}\right)
$$

where

$$
m_{i j}=\sum_{k=1}^{4} m_{i j}^{k} z_{k} .
$$

Let I be the ideal generated by the Pfaffians $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}$ of N. It holds that $I \subset J$.

Papadakis using multilinear and homological algebra calculates the equations of the codimension 4 ring which occurs as unprojection of the pair $I \subset J$.
More precisely, calculates 4 polynomials g_{i} for $\mathrm{i}=1, \ldots, 4$ and defines the map ϕ by

$$
\phi: J / I \rightarrow R / I, \quad z_{i}+I \mapsto g_{i}+I
$$

Moreover, he proves that $\operatorname{Hom}_{R / I}(J / I, R / I)$ is generated as R / I module by the inclusion map i and ϕ. From the theory it follows that the ideal

$$
\left(P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, T_{z_{1}}-g_{1}, T_{z_{2}}-g_{2}, T_{z_{3}}-g_{3}, T_{z_{4}}-g_{4}\right)
$$

of the polynomial ring $R[T]$ is Gorenstein of codimension 4.

We will now define Tom \& Jerry triples.

Let

$$
M=\left(\begin{array}{ccccc}
0 & m_{12} & m_{13} & m_{14} & m_{15} \\
-m_{12} & 0 & m_{23} & m_{24} & m_{25} \\
-m_{13} & -m_{23} & 0 & m_{34} & m_{35} \\
-m_{14} & -m_{24} & -m_{34} & 0 & m_{45} \\
-m_{15} & -m_{25} & -m_{35} & -m_{45} & 0
\end{array}\right)
$$

be a 5×5 skewsymmetric matrix and J_{1}, J_{2}, J_{3} be three complete intersection ideals of codimension 4.

Definition

We say that M is a $\operatorname{Tom}_{1}+\operatorname{Tom}_{2}+\operatorname{Tom}_{3}$ in J_{1}, J_{2}, J_{3} if the entries of M satisfy the following conditions:

$$
\begin{gathered}
m_{12} \in J_{3}, m_{13} \in J_{2}, m_{14}, m_{15} \in J_{2} \cap J_{3}, m_{23} \in J_{1}, \\
m_{24}, m_{25} \in J_{1} \cap J_{3}, m_{34}, m_{35} \in J_{1} \cap J_{2}, m_{45} \in J_{1} \cap J_{2} \cap J_{3} .
\end{gathered}
$$

Remark

Equivalently, the matrix M is Tom $_{1}$ in J_{1}, Tom ${ }_{2}$ in J_{2} and Tom ${ }_{3}$ in J_{3}.

Similarly, we set conditions in the entries of M such that M is

- Jerry ${ }_{i j}$ in J_{1}, Jerry $k l$ in J_{2} and Jerry ${ }_{m n}$ in J_{3}.
- Tom $_{i}$ in J_{1}, Tom $_{j}$ in J_{2} and Jerry $k l$ in J_{3}.
- Tom $_{i}$ in J_{1}, Jerry ${ }_{j k}$ in J_{2} and Jerry ${ }_{l m}$ in J_{3}.

We work over the polynomial ring $R=k\left[z_{i}, c_{j}\right]$, where $1 \leq i \leq 7$ and $1 \leq j \leq 25$. Denote by $\operatorname{Tom}(1,2,3)$ the following 5×5 skewsymmetric matrix

$$
\left(\begin{array}{cccc}
0 c_{1} z_{1}+c_{2} z_{2}+c_{3} z_{3}+c_{4} z_{6} & c_{5} z_{1}+c_{6} z_{2}+c_{7} z_{4}+c_{8} z_{5} & c_{9} z_{1}+c_{10} z_{2} & c_{11} z_{1}+c_{12} z_{2} \\
0 & c_{13} z_{2}+c_{14} z_{3}+c_{15} z_{5}+c_{16} z_{7} & c_{17} z_{2}+c_{18} z_{3} & c_{12} z_{2}+c_{20} z_{3} \\
& & & c_{21} z_{2}+c_{22} z_{5} \\
c_{23} z_{2}+c_{24} z_{5} \\
& & 0 & c_{25} z_{2} \\
& & 0
\end{array}\right)
$$

which is Tom $_{1}+$ Tom $_{2}+$ Tom $_{3}$ matrix in the ideals

$$
J_{1}=\left(z_{2}, z_{3}, z_{5}, z_{7}\right), \quad J_{2}=\left(z_{1}, z_{2}, z_{4}, z_{5}\right), \quad J_{3}=\left(z_{1}, z_{2}, z_{3}, z_{6}\right)
$$

Let I be the ideal generated by the Pfaffians of $\operatorname{Tom}(1,2,3)$.

Proposition

(i) For all t with $1 \leq t \leq 3$, the ideal J_{t} / I is a codimension 1 homogeneous ideal of R / l with Gorenstein quotient.
(ii) For all t, s with $1 \leq t<s \leq 3$, it holds that

$$
\operatorname{codim}_{R / I}\left(J_{t} / I+J_{s} / I\right)=3
$$

Aim: Compution of $\phi_{t}: J_{t} / I \rightarrow R / I$ for all t with $1 \leq t \leq 3$.
Strategy: We combine Papadakis' Calculation for Tom $_{1}$ with the fact that a Tom $_{i}$ matrix in an ideal J is related to Tom $_{1}$ matrix in the ideal J via a sequence of elementary row and column operations.

Proposition

For all t with $1 \leq t \leq 3$, the R / I-module $\operatorname{Hom}_{R / I}\left(J_{t} / I, R / I\right)$ is generated by the two elements i_{t} and ϕ_{t}.

Proposition

For all t, s with $1 \leq t, s \leq 3$ and $t \neq s$, it holds that

$$
\phi_{s}\left(J_{s} / I\right) \subset J_{t} / I
$$

Proposition

For all t, s with $1 \leq t, s \leq 3$ and $t \neq s$, there exists a homogeneous element $A_{s t}$ such that

$$
\phi_{s}\left(\phi_{t}(p)\right)=A_{s t} p
$$

for all $\mathrm{p} \in J_{t} / I$.

Let T_{1}, T_{2}, T_{3} be three new variables of degree 6 .

Definition

We define as $I_{u n}$ the ideal

$$
\begin{gathered}
(I)+\left(T_{1} z_{2}-\phi_{1}\left(z_{2}\right), T_{1} z_{3}-\phi_{1}\left(z_{3}\right), T_{1} z_{5}-\phi_{1}\left(z_{5}\right), T_{1} z_{7}-\phi_{1}\left(z_{7}\right),\right. \\
T_{2} z_{1}-\phi_{2}\left(z_{1}\right), T_{2} z_{2}-\phi_{2}\left(z_{2}\right), T_{2} z_{4}-\phi_{2}\left(z_{4}\right), T_{2} z_{5}-\phi_{2}\left(z_{5}\right), \\
T_{3} z_{1}-\phi_{3}\left(z_{1}\right), T_{3} z_{2}-\phi_{3}\left(z_{2}\right), T_{3} z_{3}-\phi_{3}\left(z_{3}\right), T_{3} z_{6}-\phi_{3}\left(z_{6}\right), \\
\left.T_{1} T_{2}-A_{12}, T_{1} T_{3}-A_{13}, T_{2} T_{3}-A_{23}\right)
\end{gathered}
$$

of the polynomial ring $R[T, S, W]$. We set $R_{u n}=R[T, S, W] / I_{u n}$.

Proposition

The homogeneous ideal $I_{u n}$ is a codimension 6 ideal with a minimal generating set of 20 elements.

Theorem (P.)

The ring $R_{u n}$ is Gorenstein.

Assume that J is a fixed codimension 3 complete intersection ideal.

Question

Define a codimension 2 complete intersection ideal $/$ such that $/$ is a subset of J.

One answer on this Question is given by the following computation.

Papadakis' Calculation for Unprojection of a complete

 intersection inside a complete intersection, (2004) Let $R=k\left[a_{i}, b_{i}, x_{j}\right]$, where $1 \leq i \leq 3$ and $j \in\{1,3,5\}$ be the standard graded polynomial ring. Fix $J=\left(x_{1}, x_{3}, x_{5}\right)$. Denote by A the following 2×3 matrix$$
\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right)
$$

and by A_{i} the 2×2 submatrix of A which is obtained by removing the ith column.
Consider the ideal $I=\left(a_{1} x_{1}+a_{2} x_{3}+a_{3} x_{5}, b_{1} x_{1}+b_{2} x_{3}+b_{3} x_{5}\right)$ of R. It holds that $I \subset J$.

Denote by h_{i} for $\mathrm{i}=1 \ldots 3$, the polynomial which is equal to the determinant of the submatrix A_{i} and define the map ϕ by

$$
\begin{aligned}
\phi: J / I & \rightarrow R / I, \\
\phi\left(x_{1}+I\right)=h_{1}+I, \quad \phi\left(x_{3}+I\right) & =-h_{2}+I, \quad \phi\left(x_{5}+I\right)=h_{3}+I
\end{aligned}
$$

Papadakis proved that $\operatorname{Hom}_{R / I}(J / I, R / I)$ is generated as $R / I-$ module by the inclusion map i and ϕ. From the theory it follows that the ideal

$$
I+\left(T x_{1}-h_{1}, T x_{3}-\left(-h_{2}\right), T x_{5}-h_{3}\right)
$$

of the polynomial ring $R[T]$ is Gorenstein of codimension 3.

Let $J_{1}, J_{2}, J_{3}, J_{4}$ be four codimension 3 complete intersection ideals and I is a codimension 2 complete intersection ideal.

Definition

We say that I is a 4 -intersection ideal with respect to the ideals $J_{1}, J_{2}, J_{3}, J_{4}$ if I is subset of each of the ideals $J_{1}, J_{2}, J_{3}, J_{4}$.

An example of a 4-intersection unprojection format is the following: We work over the standard graded polynomial ring $R=k\left[c_{i}, x_{i}\right]$, where $1 \leq i \leq 6$. We set

$$
I_{1234}=\left(c_{1} x_{1} x_{2}+c_{2} x_{3} x_{4}+c_{3} x_{5} x_{6}, c_{4} x_{1} x_{2}+c_{5} x_{3} x_{4}+c_{6} x_{5} x_{6}\right) .
$$

Then, I_{1234} is a 4-intersection ideal in the ideals

$$
J_{1}=\left(x_{1}, x_{3}, x_{5}\right), J_{2}=\left(x_{1}, x_{4}, x_{6}\right), J_{3}=\left(x_{2}, x_{3}, x_{6}\right), J_{4}=\left(x_{2}, x_{4}, x_{5}\right)
$$

We proved that this initial data satisfies the conditions for parallel Kustin-Miller unprojection.

For all t, with $1 \leq t \leq 4$, denote by $i_{t}: J_{t} / l_{1234} \rightarrow R / I_{1234}$ the inclusion map.

Aim: Definition of $\phi_{t}: J_{t} / I_{1234} \rightarrow R / I_{1234}$ for all t with $1 \leq t \leq 4$.
Strategy: We combine Papadakis' Calculation for a complete intersection I inside a complete intersection J with the fact that I_{1234} is a complete intersection in J_{t}.

Let $T_{1}, T_{2}, T_{3}, T_{4}$ be four new variables of degree 3 .

Definition

We define as $\overline{I_{u n}}$ the ideal

$$
\begin{gathered}
(I)+\left(T_{1} x_{1}-\phi_{1}\left(x_{1}\right), T_{1} x_{3}-\phi_{1}\left(x_{3}\right), T_{1} x_{5}-\phi_{1}\left(x_{5}\right), T_{2} x_{1}-\phi_{2}\left(x_{1}\right),\right. \\
T_{2} x_{4}-\phi_{2}\left(x_{4}\right), T_{2} x_{6}-\phi_{2}\left(x_{6}\right), T_{3} x_{2}-\phi_{3}\left(x_{2}\right), T_{3} x_{3}-\phi_{3}\left(x_{3}\right), T_{3} x_{6}-\phi_{3}\left(x_{6}\right), \\
T_{4} x_{2}-\phi_{4}\left(x_{2}\right), T_{4} x_{4}-\phi_{4}\left(x_{4}\right), T_{4} x_{5}-\phi_{4}\left(x_{5}\right), T_{2} T_{1}-A_{21}, T_{3} T_{1}-A_{31}, \\
\left.T_{4} T_{1}-A_{41}, T_{3} T_{2}-A_{32}, T_{4} T_{2}-A_{42}, T_{4} T_{3}-A_{43}\right)
\end{gathered}
$$

of the polynomial ring $R\left[T_{1}, T_{2}, T_{3}, T_{4}\right]$. We set
$\overline{R_{u n}}=R\left[T_{1}, T_{2}, T_{3}, T_{4}\right] / \overline{I_{u n}}$.

Theorem (P., 2021)

$\overline{I_{u n}}$ is a codimension 6 Gorenstein ideal with 20 generators.

Applications using Tom \& Jerry triples unprojection format

We now give two applications of the construction of $R_{u n}$.

Theorem (P.)

There exists a family of quasismooth, projectively normal and projectively Gorenstein Fano 3-folds $X \subset \mathbb{P}\left(1^{3}, 2^{7}\right)$, nonsingular away from eight quotient singularities $\frac{1}{2}(1,1,1)$, with Hilbert series of the anticanonical ring

$$
\frac{1-20 t^{4}+64 t^{6}-90 t^{8}+64 t^{10}-20 t^{12}+t^{16}}{(1-t)^{3}\left(1-t^{2}\right)^{7}}
$$

Theorem (P.)

There exists a family of quasismooth, projectively normal and projectively Gorenstein Fano 3-folds $X \subset \mathbb{P}\left(1^{3}, 2^{5}, 3^{2}\right)$, nonsingular away from four quotient singularities $\frac{1}{2}(1,1,1)$, and two quotient singularities $\frac{1}{3}(1,1,2)$, with Hilbert series of the anticanonical ring

$$
\frac{1-11 t^{4}-8 t^{5}+23 t^{6}+32 t^{7}-13 t^{8}-48 t^{9}-13 t^{10}+32 t^{11}+23 t^{12}-8 t^{13}-11 t^{14}+t^{18}}{(1-t)^{3}\left(1-t^{2}\right)^{5}\left(1-t^{3}\right)^{2}}
$$

Construction of the first family:

Denote by $k=\mathbb{C}$ the field of complex numbers.
Let $R_{u n}$ be the ring and $I_{u n}$ the ideal which were defined above. Substitute the variables $\left(c_{1}, \ldots, c_{25}\right)$ with a general element of k^{25}.
$\hat{R}_{u n}$: the ring which occurs from $R_{u n}$ after this substitution.
$\hat{I}_{u n}$: the ideal which obtained by the ideal $I_{u n}$ after this substitution.
In what follows we set

$$
\text { degree } z_{i}=\text { degree } T_{1}=\text { degree } T_{2}=\text { degree } T_{3}=2,
$$

for all i with $1 \leq i \leq 7$.
Since $R_{\text {un }}$ is Gorenstein, Proj $\hat{R}_{\text {un }} \subset \mathbb{P}\left(2^{10}\right)$ is a projectively
Gorenstein 3-fold.

Let $A=k\left[w_{1}, w_{2}, w_{3}, z_{1}, z_{2}, z_{3}, z_{5}, T_{1}, T_{2}, T_{3}\right]$ be the polynomial ring over k with w_{1}, w_{2}, w_{3} variables of degree 1 . Consider the graded k-algebra homomorphism

$$
\psi: \hat{R}_{u n}\left[T_{1}, T_{2}, T_{3}\right] \rightarrow A
$$

with

$$
\begin{gathered}
\psi\left(z_{1}\right)=z_{1}, \quad \psi\left(z_{2}\right)=z_{2}, \quad \psi\left(z_{3}\right)=z_{3}, \quad \psi\left(z_{4}\right)=f_{1} \\
\psi\left(z_{5}\right)=z_{5}, \quad \psi\left(z_{6}\right)=f_{2}, \quad \psi\left(z_{7}\right)=f_{3}, \quad \psi\left(T_{1}\right)=T_{1} \\
\\
\psi\left(T_{2}\right)=T_{2}, \quad \psi\left(T_{3}\right)=T_{3}
\end{gathered}
$$

where
$f_{1}=I_{1} z_{1}+I_{2} z_{2}+l_{3} z_{3}+I_{4} z_{5}+I_{5} T_{1}+I_{6} T_{2}+I_{7} T_{3}+I_{8} w_{1}^{2}+$ $l_{9} w_{1} w_{2}+l_{10} w_{1} w_{3}+l_{11} w_{2}^{2}+l_{12} w_{2} w_{3}+l_{13} w_{3}^{2}$,
$f_{2}=I_{14} z_{1}+l_{15} z_{2}+I_{16} z_{3}+I_{17} z_{5}+I_{18} T_{1}+I_{19} T_{2}+I_{20} T_{3}+I_{21} w_{1}^{2}+$ $l_{22} w_{1} w_{2}+l_{23} w_{1} w_{3}+l_{24} w_{2}^{2}+l_{25} w_{2} w_{3}+l_{26} w_{3}^{2}$,
$f_{3}=I_{27} z_{1}+l_{28} z_{2}+I_{29} z_{3}+l_{30} z_{5}+l_{31} T_{1}+l_{32} T_{2}+l_{33} T_{3}+l_{34} w_{1}^{2}+$ $l_{35} w_{1} w_{2}+l_{36} w_{1} w_{3}+l_{37} w_{2}^{2}+l_{38} w_{2} w_{3}+l_{39} w_{3}^{2}$
and $\left(I_{1}, \ldots, I_{39}\right) \in k^{39}$ are general.
Denote by Q the ideal of the ring A generated by the subset $\psi\left(\hat{l}_{u n}\right)$. Let $X=V(Q) \subset \mathbb{P}\left(1^{3}, 2^{7}\right)$. Then X is a codimension 6 projectively Gorenstein 3-fold.

Proposition

The ring A / Q is an integral domain.

Proposition

Consider $X=V(Q) \subset \mathbb{P}\left(1^{3}, 2^{7}\right)$. Denote by $X_{\text {cone }} \subset \mathbb{A}^{10}$ the affine cone over X. The scheme $X_{\text {cone }}$ is smooth outside the vertex of the cone.

Proposition

Consider the singular locus $Z=V\left(w_{1}, w_{2}, w_{3}\right)$ of the weighted projective space $\mathbb{P}\left(1^{3}, 2^{7}\right)$. The intersection of X with Z consists of exactly eight points which are quotient singularities of type $\frac{1}{2}(1,1,1)$ for X.

Proposition

The minimal graded resolution of A / Q as A-module is equal to

$$
\begin{gathered}
0 \rightarrow A(-16) \rightarrow A(-12)^{20} \rightarrow A(-10)^{64} \rightarrow A(-8)^{90} \rightarrow A(-6)^{64} \\
\rightarrow A(-4)^{20} \rightarrow A
\end{gathered}
$$

Moreover, the canonical module of A / Q is isomorphic to $(A / Q)(-1)$ and the Hilbert series of A / Q as graded A-module is equal to

$$
\frac{1-20 t^{4}+64 t^{6}-90 t^{8}+64 t^{10}-20 t^{12}+t^{16}}{(1-t)^{3}\left(1-t^{2}\right)^{7}}
$$

Application using 4-intersection unprojection format

 As an application of the construction of $\overline{R_{u n}}$ we proved the following theorem.
Theorem (P.)

There exists a family of quasismooth, projectively normal and projectively Gorenstein Fano 3-folds $X \subset \mathbb{P}\left(1^{8}, 2,3\right)$, nonsingular away from eight quotient singularities $\frac{1}{3}(1,1,2)$, with Hilbert series of the anticanonical ring

$$
\frac{1-6 t^{2}+15 t^{4}-20 t^{6}+15 t^{8}-6 t^{10}+t^{12}}{(1-t)^{8}\left(1-t^{2}\right)\left(1-t^{3}\right)}
$$

References:

- S. Altinok, Graded rings corresponding to polarised K3 surfaces and Q-Fano 3-folds. Univ. of Warwick Ph.D. thesis, 1998. vii +93 pp.
- S. Altinok, G. Brown and M.Reid, Fano 3-folds, K3 surfaces and graded rings. Topology and geometry: commemorating SISTAG, 25-53, Contemp. Math., 314, Amer. Math. Soc., Providence, RI, 2002.
- G. Brown, Graded ring database homepage, Online searchable database, available at http://www.grdb.co.uk/.
- G. Brown, M. Kerber and M. Reid, Fano 3-folds in codimension 4, Tom and Jerry, Part I. Compos. Math. 148 (2012), 1171-1194.
- D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Amer. J. Math. 99 (1977), $447-485$.
- A. Corti, A. Pukhlikov and M. Reid, Fano 3-fold hypersurfaces. Explicit birational geometry of 3-folds, 175-258, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000.
- A. Kustin and M. Miller, Constructing big Gorenstein ideals from small ones. J. Algebra. 85 (1983), 303-322.
- J. Neves and S. A. Papadakis, Parallel Kustin-Miller unprojection with an application to Calabi-Yau geometry. Proc. Lond. Math. Soc. (3) 106 (2013), 203-223.
- S. A. Papadakis, Kustin-Miller unprojection with complexes. J. Algebraic Geom. 13 (2004). 249-268.
- S. A. Papadakis and M. Reid, Kustin-Miller unprojection without complexes. J. Algebraic Geom. 13 (2004), 563-577.
- V. Petrotou, Tom \& Jerry triples with an application to Fano 3-folds. Commun. Algebra 50 (2022), 3960-3977.
- M. Reid, Graded Rings and Birational Geometry. Proc. of algebraic symposium (Kinosaki, Oct 2000), 1-72, 2000.

Thank you!!!

