# Integrable systems with $S^1$ -actions and the associated polygons

## Joseph Palmer University of Illinois at Urbana-Champaign

## joint with Y. Le Floch and S. Hohloch

University of Nottingham geometry seminar

November 10, 2021

- Let  $(M, \omega)$  be a symplectic manifold and  $f: M \to \mathbb{R}$ .
- Denote by  $\mathcal{X}_f$  the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot)+\mathrm{d} f=0.$$

- Let  $(M, \omega)$  be a symplectic manifold and  $f: M \to \mathbb{R}$ .
- Denote by  $\mathcal{X}_f$  the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot)+\mathrm{d} f=0.$$

#### Definition

An integrable system is a triple  $(M, \omega, F = (f_1, ..., f_n))$  where  $(M, \omega)$  is a 2*n*-dimensional symplectic manifold and 1  $\{f_i, f_j\} = 0;$ 

- Let  $(M, \omega)$  be a symplectic manifold and  $f: M \to \mathbb{R}$ .
- Denote by  $\mathcal{X}_f$  the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot)+\mathrm{d} f=0.$$

#### Definition

An integrable system is a triple  $(M, \omega, F = (f_1, ..., f_n))$  where  $(M, \omega)$  is a 2*n*-dimensional symplectic manifold and 1  $\{f_i, f_j\} = 0;$ 

**2**  $df_1, \ldots, df_n$  are linearly independent almost everywhere;

singular points are those for which linear independence fails.

- Let  $(M, \omega)$  be a symplectic manifold and  $f: M \to \mathbb{R}$ .
- Denote by  $\mathcal{X}_f$  the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot)+\mathrm{d} f=0.$$

#### Definition

An integrable system is a triple  $(M, \omega, F = (f_1, ..., f_n))$  where  $(M, \omega)$  is a 2*n*-dimensional symplectic manifold and 1  $\{f_i, f_j\} = 0;$ 

- singular points are those for which linear independence fails.
- Flows of  $\mathcal{X}_{f_1}, \ldots \mathcal{X}_{f_n}$  induce (local)  $\mathbb{R}^n$ -action.

- Let  $(M, \omega)$  be a symplectic manifold and  $f: M \to \mathbb{R}$ .
- Denote by  $\mathcal{X}_f$  the Hamiltonian vector field of f, which satisfies

$$\omega(\mathcal{X}_f,\cdot)+\mathrm{d} f=0.$$

#### Definition

An integrable system is a triple  $(M, \omega, F = (f_1, ..., f_n))$  where  $(M, \omega)$  is a 2*n*-dimensional symplectic manifold and 1  $\{f_i, f_j\} = 0;$ 

- singular points are those for which linear independence fails.
- Flows of  $\mathcal{X}_{f_1}, \ldots \mathcal{X}_{f_n}$  induce (local)  $\mathbb{R}^n$ -action.
- Fixed point or rank zero point is  $p \in M$  such that dF(p) = 0.

#### Definition

A toric integrable system is a triple  $(M, \omega, F = (f_1, \dots, f_n))$  where  $(M, \omega)$  is a 2*n*-dimensional symplectic manifold and **1**  $\{f_i, f_i\} = 0;$ 

#### Definition

A toric integrable system is a triple  $(M, \omega, F = (f_1, \dots, f_n))$  where  $(M, \omega)$  is a 2*n*-dimensional symplectic manifold and

- **1**  $\{f_i, f_j\} = 0;$
- **2**  $df_1, \ldots, df_n$  are linearly independent almost everywhere;
- the flows of X<sub>f1</sub>,..., X<sub>fn</sub> generate an effective T<sup>n</sup>-action (thus each flow is periodic);
- **4** *M* is compact;

#### Definition

A toric integrable system is a triple  $(M, \omega, F = (f_1, \dots, f_n))$  where  $(M, \omega)$  is a 2*n*-dimensional symplectic manifold and

- **1**  $\{f_i, f_j\} = 0;$
- **2**  $df_1, \ldots, df_n$  are linearly independent almost everywhere;
- the flows of X<sub>f1</sub>,..., X<sub>fn</sub> generate an effective T<sup>n</sup>-action (thus each flow is periodic);

4 M is compact;

▶ i.e. a global Hamiltonian *T<sup>n</sup>*-action.

### Definition

A toric integrable system is a triple  $(M, \omega, F = (f_1, \dots, f_n))$  where  $(M, \omega)$  is a 2*n*-dimensional symplectic manifold and

- **1**  $\{f_i, f_j\} = 0;$
- **2**  $df_1, \ldots, df_n$  are linearly independent almost everywhere;
- the flows of X<sub>f1</sub>,..., X<sub>fn</sub> generate an effective T<sup>n</sup>-action (thus each flow is periodic);

4 M is compact;

• i.e. a global Hamiltonian  $T^n$ -action.

►  $F: M \to \mathbb{R}^n$ ,

## Definition

A toric integrable system is a triple  $(M, \omega, F = (f_1, \dots, f_n))$  where  $(M, \omega)$  is a 2*n*-dimensional symplectic manifold and

- **1**  $\{f_i, f_j\} = 0;$
- **2**  $df_1, \ldots, df_n$  are linearly independent almost everywhere;
- the flows of X<sub>f1</sub>,..., X<sub>fn</sub> generate an effective T<sup>n</sup>-action (thus each flow is periodic);

4 M is compact;

- i.e. a global Hamiltonian  $T^n$ -action.
- F: M → ℝ<sup>n</sup>, Atiyah, Guillemin-Sternberg (1982) showed that in this case F(M) is the convex hull of the images of the fixed points.

# Toric integrable systems: the classification



## Theorem (Delzant, 1988)

Given any "Delzant polytope"  $\Delta \subset \mathbb{R}^n$ , there exists a unique (up to isomorphism) toric integrable system  $(M, \omega, F)$  such that  $F(M) = \Delta$ .

# Toric integrable systems: the classification



## Theorem (Delzant, 1988)

Given any "Delzant polytope"  $\Delta \subset \mathbb{R}^n$ , there exists a unique (up to isomorphism) toric integrable system  $(M, \omega, F)$  such that  $F(M) = \Delta$ .

• {toric systems}  $\longleftrightarrow$  {Delzant polytopes}.

# Toric integrable systems: the classification



## Theorem (Delzant, 1988)

Given any "Delzant polytope"  $\Delta \subset \mathbb{R}^n$ , there exists a unique (up to isomorphism) toric integrable system  $(M, \omega, F)$  such that  $F(M) = \Delta$ .

- {toric systems}  $\longleftrightarrow$  {Delzant polytopes}.
- System can be recovered by symplectic reduction on  $\mathbb{C}^d$ .

# Example



• 
$$M = S^2 \times S^2$$
,  $\omega = \omega_1 \oplus 2\omega_2$ 

• coordinates 
$$(x_1, y_1, z_1, x_2, y_2, z_2)$$

# Example



• 
$$M = S^2 \times S^2$$
,  $\omega = \omega_1 \oplus 2\omega_2$ 

$$\textbf{ coordinates } (x_1, y_1, z_1, x_2, y_2, z_2) \\ \begin{cases} J = z_1 + 2z_2 \\ H_t = z_1 \end{cases}$$

# Example



• 
$$M = S^2 \times S^2$$
,  $\omega = \omega_1 \oplus 2\omega_2$ 

► coordinates 
$$(x_1, y_1, z_1, x_2, y_2, z_2)$$
  

$$\begin{cases}
J = z_1 + 2z_2 \\
H_t = z_1
\end{cases}$$



## Definition (Vũ Ngọc, 2007)

A semitoric integrable system is a triple  $(M, \omega, F = (J, H))$  where  $(M, \omega)$  is a 4-dimensional symplectic manifold and **1**  $\{J, H\} = 0$ ;

**2** dJ and dH are linearly independent almost everywhere;

## Definition (Vũ Ngọc, 2007)

A semitoric integrable system is a triple  $(M, \omega, F = (J, H))$  where  $(M, \omega)$  is a 4-dimensional symplectic manifold and

- **1**  $\{J, H\} = 0;$
- **2** dJ and dH are linearly independent almost everywhere;
- **3** the flow of  $\mathcal{X}_J$  is periodic (i.e. generates an  $S^1$ -action);
- 4 J is proper;
- **5** all singularities of (J, H) are non-degenerate with no hyperbolic blocks.

## Definition (Vũ Ngọc, 2007)

A semitoric integrable system is a triple  $(M, \omega, F = (J, H))$  where  $(M, \omega)$  is a 4-dimensional symplectic manifold and

- **1**  $\{J, H\} = 0;$
- **2** dJ and dH are linearly independent almost everywhere;
- **3** the flow of  $\mathcal{X}_J$  is periodic (i.e. generates an  $S^1$ -action);
- 4 J is proper;
- **5** all singularities of (J, H) are non-degenerate with no hyperbolic blocks.
- non-degenerate, analogue of Morse theory

## Definition (Vũ Ngọc, 2007)

A semitoric integrable system is a triple  $(M, \omega, F = (J, H))$  where  $(M, \omega)$  is a 4-dimensional symplectic manifold and

- **1**  $\{J, H\} = 0;$
- **2** dJ and dH are linearly independent almost everywhere;
- **3** the flow of  $\mathcal{X}_J$  is periodic (i.e. generates an  $S^1$ -action);
- 4 J is proper;
- **5** all singularities of (J, H) are non-degenerate with no hyperbolic blocks.
- non-degenerate, analogue of Morse theory
- Simple = at most one focus-focus point in each level set of J.

Points in simple semitoric systems:

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

Points in simple semitoric systems:

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

Fibers in simple semitoric systems: regular elliptic-regular elliptic-elliptic focus-focus



Points in simple semitoric systems:

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

Fibers in simple semitoric systems: regular elliptic-regular elliptic focus-focus



Points in simple semitoric systems:

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

Fibers in simple semitoric systems: regular elliptic-regular elliptic-elliptic focus-focus



 Associated to each semitoric integrable system is a polygon with marked interior points.



 Associated to each semitoric integrable system is a polygon with marked interior points.



 Each interior point is labeled with an integer and a Taylor series in two variables.

The five invariants:

- (1) the number of focus-focus points invariant;
- (2) the semitoric polygon invariant;
- (3) the height invariant;
- (4) the Taylor series invariant;
- (5) the twisting index invariant;

The five invariants:

- (1) the number of focus-focus points invariant;
- (2) the semitoric polygon invariant;
- (3) the height invariant;
- (4) the Taylor series invariant;
- (5) the twisting index invariant;

Theorem (Pelayo-Vũ Ngọc classification (2009, 2011))

- **1** Two simple semitoric systems are isomorphic if and only if they have the same invariants (1)-(5);
- 2 Given any admissible list of invariants (1)-(5) there exists a simple semitoric system with those as its invariants.

The five invariants:

- (1) the number of focus-focus points invariant;
- (2) the semitoric polygon invariant;
- (3) the height invariant;
- (4) the Taylor series invariant;
- (5) the twisting index invariant;

## Theorem (Pelayo-Vũ Ngọc classification (2009, 2011))

- **1** Two simple semitoric systems are isomorphic if and only if they have the same invariants (1)-(5);
- 2 Given any admissible list of invariants (1)-(5) there exists a simple semitoric system with those as its invariants.
- {simple semitoric systems} (1-1)
   {admissible invariants (1)-(5)}.



In a non-simple semitoric system, several focus-focus points can lie on the same fiber.



In a non-simple semitoric system, several focus-focus points can lie on the same fiber.

## Theorem (Palmer-Pelayo-Tang (2019))

Semitoric systems, simple are not, are classified by the marked labeled semitoric polygon invariant.



In a non-simple semitoric system, several focus-focus points can lie on the same fiber.

## <u>Theorem (</u>Palmer-Pelayo-Tang (2019))

Semitoric systems, simple are not, are classified by the marked labeled semitoric polygon invariant.

• {semitoric systems}  $\longleftrightarrow$  {marked labeled semitoric polygons}.

# General goal

- ► Toric integrable systems can be recovered from the polytope by performing symplectic reductions on C<sup>d</sup> by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.

# General goal

- Toric integrable systems can be recovered from the polytope by performing symplectic reductions on C<sup>d</sup> by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.
- Much harder to write down examples in semitoric case!

# General goal

- Toric integrable systems can be recovered from the polytope by performing symplectic reductions on C<sup>d</sup> by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.
- Much harder to write down examples in semitoric case! (in some sense unavoidable because semitoric systems are more complicated, but should still be able to find some examples).
## General goal

- Toric integrable systems can be recovered from the polytope by performing symplectic reductions on C<sup>d</sup> by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.
- Much harder to write down examples in semitoric case! (in some sense unavoidable because semitoric systems are more complicated, but should still be able to find some examples).

#### Goal

Given specified semitoric polygon invariant try to find an explicit system with that invariant (forgetting about the other invariants).

#### Semitoric invariants: 1. Number of focus-focus points

Focus-focus points are isolated and there are finitely many.

#### Semitoric invariants: 1. Number of focus-focus points

- ► Focus-focus points are isolated and there are finitely many.
- Their number is the first invariant.

▶  $F: M \to \mathbb{R}^2$  produces a singular Lagrangian torus fibration

#### ▶ $F: M \to \mathbb{R}^2$ produces a singular Lagrangian torus fibration



•  $F: M \to \mathbb{R}^2$  produces a singular Lagrangian torus fibration.



•  $F: M \to \mathbb{R}^2$  produces a singular Lagrangian torus fibration.



▶ Torus fibration → integral affine structure on (F(M))<sub>regular</sub>.
 ▶ NOT equal to integral affine structure inherited from R<sup>2</sup>.









 The integral affine structure may be "straightened out" [Vũ Ngọc (2007) following Symington (2002)]



Semitoric polygon invariant: Family of polygons.



- Semitoric polygon invariant: Family of polygons.
- Note: f<sub>ε</sub> ∘ F is a the momentum map for a Hamiltonian T<sup>2</sup>-action away from the cuts.

## Semitoric invariants: 3. Height invariant

#### Height invariant: position of images of focus-focus points.

## Semitoric invariants: 3. Height invariant

#### Height invariant: position of images of focus-focus points.



# Semitoric invariants: 1./2./3.: the marked polygon

Can easily package together the semitoric polygon, number of focus-focus points, and height invariants into an object called the marked semitoric polygon

# Semitoric invariants: 1./2./3.: the marked polygon

Can easily package together the semitoric polygon, number of focus-focus points, and height invariants into an object called the marked semitoric polygon



 For each focus-focus point the neighborhood of the singular fiber is classified by a Taylor series [Vũ Ngọc, 2003].

- For each focus-focus point the neighborhood of the singular fiber is classified by a Taylor series [Vũ Ngọc, 2003].
- Starting at a fiber nearby, follow the flow of  $\tilde{H}$  to return to the *J*-orbit, and then follow the flow of *J*.

- For each focus-focus point the neighborhood of the singular fiber is classified by a Taylor series [Vũ Ngọc, 2003].
- Starting at a fiber nearby, follow the flow of  $\tilde{H}$  to return to the *J*-orbit, and then follow the flow of *J*.



- For each focus-focus point the neighborhood of the singular fiber is classified by a Taylor series [Vũ Ngọc, 2003].
- Starting at a fiber nearby, follow the flow of  $\tilde{H}$  to return to the *J*-orbit, and then follow the flow of *J*.



- For each focus-focus point the neighborhood of the singular fiber is classified by a Taylor series [Vũ Ngọc, 2003].
- Starting at a fiber nearby, follow the flow of  $\tilde{H}$  to return to the *J*-orbit, and then follow the flow of *J*.





Use τ<sub>1</sub> and τ<sub>2</sub> (as the fiber approaches the singular one) to specify a Taylor series in two variables.



Use τ<sub>1</sub> and τ<sub>2</sub> (as the fiber approaches the singular one) to specify a Taylor series in two variables.

$$\mathsf{a}_{10}\mathsf{X} + \sum_{i,j\geq 1} \mathsf{a}_{ij}\mathsf{X}^i\mathsf{Y}^j, \qquad \mathsf{a}_{10}\in \mathbb{R}/2\pi\mathbb{Z}, \; \mathsf{a}_{ij}\in \mathbb{R}.$$



Use τ<sub>1</sub> and τ<sub>2</sub> (as the fiber approaches the singular one) to specify a Taylor series in two variables.

$$a_{10}X + \sum_{i,j\geq 1} a_{ij}X^iY^j, \qquad a_{10}\in \mathbb{R}/2\pi\mathbb{Z}, \,\, a_{ij}\in \mathbb{R}.$$

Notice: this construction only sees where the trajectory "lands" - it can't detect a twist.

#### Semitoric invariants: 5. Twisting index invariant

Once the semilocal neighborhood of the focus-focus fiber is determined by the Taylor series there is an additional degree of freedom related to how this fiber sits with respect to the rest of the fibration.

#### Semitoric invariants: 5. Twisting index invariant

- Once the semilocal neighborhood of the focus-focus fiber is determined by the Taylor series there is an additional degree of freedom related to how this fiber sits with respect to the rest of the fibration.
- This freedom is specified by the twisting index, an integer for each marked point in each choice of polygon.

#### Semitoric invariants: 5. Twisting index invariant

- Once the semilocal neighborhood of the focus-focus fiber is determined by the Taylor series there is an additional degree of freedom related to how this fiber sits with respect to the rest of the fibration.
- This freedom is specified by the twisting index, an integer for each marked point in each choice of polygon.
- Can think of it as discrete freedom in how to glue neighborhood of focus-focus point into the system.

#### [Sadovskií and Zĥilinskií, 1999]



$$\blacktriangleright M = S^2 \times S^2, \quad \omega = R_1 \omega_1 \oplus R_2 \omega_2$$

• coordinates  $(x_1, y_1, z_1, x_2, y_2, z_2)$ 

#### [Sadovskií and Zĥilinskií, 1999]



• 
$$M = S^2 \times S^2$$
,  $\omega = R_1 \omega_1 \oplus R_2 \omega_2$ 

► coordinates 
$$(x_1, y_1, z_1, x_2, y_2, z_2)$$
  

$$\begin{cases}
J = R_1 z_1 + R_2 z_2 \\
H_t = (1 - t) z_1 + t(x_1 x_2 + y_1 y_2 + z_1 z_2)
\end{cases}$$

for  $t \in [0, 1]$  and for now assume  $R_1 < R_2$ .

#### [Sadovskií and Zĥilinskií, 1999]



• 
$$M = S^2 \times S^2$$
,  $\omega = R_1 \omega_1 \oplus R_2 \omega_2$ 

coordinates (x<sub>1</sub>, y<sub>1</sub>, z<sub>1</sub>, x<sub>2</sub>, y<sub>2</sub>, z<sub>2</sub>)
$$\begin{cases}
J = R_1 z_1 + R_2 z_2 \\
H_t = (1-t)z_1 + t(x_1 x_2 + y_1 y_2 + z_1 z_2)
\end{cases}$$

for  $t \in [0, 1]$  and for now assume  $R_1 < R_2$ .

▶ Notice J and  $H_0$  generate  $S^1$ -actions

#### [Sadovskií and Zĥilinskií, 1999]



• 
$$M = S^2 \times S^2$$
,  $\omega = R_1 \omega_1 \oplus R_2 \omega_2$ 

• coordinates 
$$(x_1, y_1, z_1, x_2, y_2, z_2)$$
  

$$\begin{cases}
J = R_1 z_1 + R_2 z_2 \\
H_t = (1 - t) z_1 + t(x_1 x_2 + y_1 y_2 + z_1 z_2)
\end{cases}$$

for  $t \in [0, 1]$  and for now assume  $R_1 < R_2$ .

• Notice J and  $H_0$  generate  $S^1$ -actions

• Let 
$$NS = (0, 0, 1, 0, 0, -1)$$

#### [Sadovskií and Zĥilinskií, 1999]



• 
$$M = S^2 \times S^2$$
,  $\omega = R_1 \omega_1 \oplus R_2 \omega_2$ 

• coordinates 
$$(x_1, y_1, z_1, x_2, y_2, z_2)$$
  

$$\begin{cases}
J = R_1 z_1 + R_2 z_2 \\
H_t = (1 - t) z_1 + t(x_1 x_2 + y_1 y_2 + z_1 z_2)
\end{cases}$$

for  $t \in [0, 1]$  and for now assume  $R_1 < R_2$ .

• Notice J and  $H_0$  generate  $S^1$ -actions

• Let 
$$NS = (0, 0, 1, 0, 0, -1)$$

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

- Let  $t \in [0,1].$  There exists  $t^-, t^+ \in (0,1)$  such that  $t^- < t^+$  and
  - I if t < t<sup>−</sup> then (J, H<sub>t</sub>) is semitoric with zero focus-focus points;

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

Let  $t \in [0,1].$  There exists  $t^-, t^+ \in (0,1)$  such that  $t^- < t^+$  and

- if t < t<sup>−</sup> then (J, H<sub>t</sub>) is semitoric with zero focus-focus points;
- **2** if  $t = t^-$  then  $(J, H_t)$  has a degenerate singular point at NS;

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

Let  $t \in [0,1].$  There exists  $t^-, t^+ \in (0,1)$  such that  $t^- < t^+$  and

- if t < t<sup>−</sup> then (J, H<sub>t</sub>) is semitoric with zero focus-focus points;
- **2** if  $t = t^-$  then  $(J, H_t)$  has a degenerate singular point at NS;
- if t<sup>-</sup> < t < t<sup>+</sup> then (J, H<sub>t</sub>) is a semitoric with exactly one focus-focus point (at NS);
## Example: Coupled angular momenta

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

Let  $t \in [0,1].$  There exists  $t^-, t^+ \in (0,1)$  such that  $t^- < t^+$  and

- if t < t<sup>-</sup> then (J, H<sub>t</sub>) is semitoric with zero focus-focus points;
- **2** if  $t = t^-$  then  $(J, H_t)$  has a degenerate singular point at NS;
- if t<sup>-</sup> < t < t<sup>+</sup> then (J, H<sub>t</sub>) is a semitoric with exactly one focus-focus point (at NS);
- 4 if  $t = t^+$  then  $(J, H_t)$  has a degenerate singular point at NS;

## Example: Coupled angular momenta

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

- Let  $t \in [0,1].$  There exists  $t^-, t^+ \in (0,1)$  such that  $t^- < t^+$  and
  - if t < t<sup>-</sup> then (J, H<sub>t</sub>) is semitoric with zero focus-focus points;
  - **2** if  $t = t^-$  then  $(J, H_t)$  has a degenerate singular point at NS;
  - if t<sup>-</sup> < t < t<sup>+</sup> then (J, H<sub>t</sub>) is a semitoric with exactly one focus-focus point (at NS);
  - 4 if  $t = t^+$  then  $(J, H_t)$  has a degenerate singular point at NS;
  - **5** if  $t > t^+$  then  $(J, H_t)$  is semitoric with zero focus-focus points.

## Example: Coupled angular momenta

Theorem (Sadovskií-Zĥilinskií (1999) and Le Floch-Pelayo (2018))

- Let  $t \in [0,1].$  There exists  $t^-, t^+ \in (0,1)$  such that  $t^- < t^+$  and
  - if t < t<sup>-</sup> then (J, H<sub>t</sub>) is semitoric with zero focus-focus points;
  - **2** if  $t = t^-$  then  $(J, H_t)$  has a degenerate singular point at NS;
  - if t<sup>-</sup> < t < t<sup>+</sup> then (J, H<sub>t</sub>) is a semitoric with exactly one focus-focus point (at NS);
  - 4 if  $t = t^+$  then  $(J, H_t)$  has a degenerate singular point at NS;
  - **5** if  $t > t^+$  then  $(J, H_t)$  is semitoric with zero focus-focus points.
  - In particular,  $(J, H_{1/2})$  is semitoric.



Semitoric with zero focus-focus points (figure made in Mathematica)



Semitoric with zero focus-focus points (figure made in Mathematica)



Semitoric with one focus-focus point (figure made in Mathematica)



(figure made in Mathematica)



Semitoric with one focus-focus point (figure made in Mathematica)



Semitoric with zero focus-focus points (figure made in Mathematica)

### Coupled angular momenta: semitoric polygon

The image of the momentum map for  $(J, H_t)$ :



## Coupled angular momenta: semitoric polygon

The image of the momentum map for  $(J, H_t)$ :



The semitoric polygons for  $(J, H_{1/2})$ :



## Coupled angular momenta: semitoric polygon

The image of the momentum map for  $(J, H_t)$ :



The semitoric polygons for  $(J, H_{1/2})$ :



#### Idea

Interpolate between systems "related to the semitoric polygons" to find desired semitoric system.

# Semitoric families: definition

### Definition (Le Floch-P., 2018)

A semitoric family is a family of integrable systems ( $M, \omega, F_t$ ),  $0 \le t \le 1$ , where

- $\dim(M) = 4;$
- $\blacktriangleright F_t = (J, H_t);$
- ► J generates an S<sup>1</sup>-action;
- $(t,p) \mapsto H_t(p)$  is smooth.
- it is semitoric for all but finitely many values of t (called the degenerate times).

# Semitoric families: definition

### Definition (Le Floch-P., 2018)

A semitoric family is a family of integrable systems  $(M, \omega, F_t)$ ,  $0 \le t \le 1$ , where

- $\dim(M) = 4;$
- $\blacktriangleright F_t = (J, H_t);$
- ► J generates an S<sup>1</sup>-action;
- $(t,p) \mapsto H_t(p)$  is smooth.
- it is semitoric for all but finitely many values of t (called the degenerate times).
- Semitoric families (arXiv:1810.06915, to appear in Memoirs of the AMS)

# Semitoric families: definition

### Definition (Le Floch-P., 2018)

A semitoric family is a family of integrable systems ( $M, \omega, F_t$ ),  $0 \le t \le 1$ , where

- $\dim(M) = 4;$
- $\blacktriangleright F_t = (J, H_t);$
- ► J generates an S<sup>1</sup>-action;
- $(t,p) \mapsto H_t(p)$  is smooth.
- it is semitoric for all but finitely many values of t (called the degenerate times).
- Semitoric families (arXiv:1810.06915, to appear in Memoirs of the AMS)
- The behavior at the degenerate times can be very complicated!

### Definition (Le Floch-P.)

- ▶ *p* is of elliptic-elliptic type for  $t < t^-$ ;
- ▶ *p* is of focus-focus type for  $t^- < t < t^+$ ;
- *p* is of elliptic-elliptic type for  $t > t^+$ ;
- $M \setminus \{p\}$  has no degenerate points for any time.

### Definition (Le Floch-P.)

- ▶ *p* is of elliptic-elliptic type for  $t < t^-$ ;
- ▶ *p* is of focus-focus type for  $t^- < t < t^+$ ;
- *p* is of elliptic-elliptic type for  $t > t^+$ ;
- $M \setminus \{p\}$  has no degenerate points for any time.
- *p* automatically degenerate for  $t = t^{\pm}$

### Definition (Le Floch-P.)

- ▶ *p* is of elliptic-elliptic type for  $t < t^-$ ;
- ▶ *p* is of focus-focus type for  $t^- < t < t^+$ ;
- *p* is of elliptic-elliptic type for  $t > t^+$ ;
- $M \setminus \{p\}$  has no degenerate points for any time.
- *p* automatically degenerate for  $t = t^{\pm}$
- Other rank zero points cannot change type

### Definition (Le Floch-P.)

- ▶ *p* is of elliptic-elliptic type for  $t < t^-$ ;
- ▶ *p* is of focus-focus type for  $t^- < t < t^+$ ;
- *p* is of elliptic-elliptic type for  $t > t^+$ ;
- $M \setminus \{p\}$  has no degenerate points for any time.
- *p* automatically degenerate for  $t = t^{\pm}$
- Other rank zero points cannot change type
- First example: coupled angular momenta

Invariance of polygon:

### Lemma (Le Floch-P.)

The polygon invariant and number of focus-focus points in a (simple) semitoric family can only change at degenerate times.

Invariance of polygon:

#### Lemma (Le Floch-P.)

The polygon invariant and number of focus-focus points in a (simple) semitoric family can only change at degenerate times.

But how does is change?

Invariance of polygon:

### Lemma (Le Floch-P.)

The polygon invariant and number of focus-focus points in a (simple) semitoric family can only change at degenerate times.

But how does is change?

#### Lemma (Le Floch-P.)

Let  $(M, \omega, (J, H_t))$  be a semitoric transition family with transition point p. Roughly, the set of semitoric polygons for  $t^- < t < t^+$  is the union of the ones for  $t < t^-$  and  $t > t^+$ .





To construct a system with certain semitoric polygons can try to transition between "toric type" systems corresponding to the semitoric polygons.

Intro Polygons Examples on  $W_1$  2 focus-focus

## The first Hirzebruch surface



▶ Recall the first Hirzebruch surface,  $W_1$ ,

Intro Polygons Examples on W1 2 focus-focus

# The first Hirzebruch surface



▶ Recall the first Hirzebruch surface, W<sub>1</sub>, given by C<sup>4</sup> reduced by Hamiltonian torus action:

$${\it N}=(1/2)\left(|u_1|^2+|u_2|^2+|u_3|^2,|u_3|^2+|u_4|^2
ight)$$
 at (2,1).

• Usual toric system:  $J = 1/2|u_2|^2$ ,  $H_0 = 1/2|u_3|^2$ .

Intro Polygons Examples on W1 2 focus-focus

# The first Hirzebruch surface



▶ Recall the first Hirzebruch surface, W<sub>1</sub>, given by C<sup>4</sup> reduced by Hamiltonian torus action:

$${\sf N}=(1/2)\left(|u_1|^2+|u_2|^2+|u_3|^2,|u_3|^2+|u_4|^2
ight)$$
 at (2,1).

- Usual toric system:  $J = 1/2|u_2|^2$ ,  $H_0 = 1/2|u_3|^2$ .
- Transition between  $H_0$  and  $-H_0$ .

Intro Polygons Examples on W1 2 focus-focus

# The first Hirzebruch surface



▶ Recall the first Hirzebruch surface, W<sub>1</sub>, given by C<sup>4</sup> reduced by Hamiltonian torus action:

$${\sf N}=(1/2)\left(|u_1|^2+|u_2|^2+|u_3|^2,|u_3|^2+|u_4|^2
ight)$$
 at (2,1).

- Usual toric system:  $J = 1/2|u_2|^2$ ,  $H_0 = 1/2|u_3|^2$ .
- Transition between  $H_0$  and  $-H_0$ .





# Example on $W_1$

Let 
$$H_t = (1-t)H_0 + t(-H_0 + \gamma \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4)).$$

#### Theorem (Le Floch-P.)

 $(J, H_t)$  is a semitoric transition family on  $W_1$ .

# Example on $W_1$

Let 
$$H_t = (1 - t)H_0 + t(-H_0 + \gamma \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4)).$$

#### Theorem (Le Flo<u>ch-P.)</u>





# Example on $W_1$

Let 
$$H_t = (1-t)H_0 + t(-H_0 + \gamma \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4)).$$

#### Theorem (Le Floch-P.)





• Fixed points move on sphere  $S = J^{-1}(0)$ .

# Let $H_t = (1 - t)H_0 + t(-H_0 + \operatorname{Re}(\overline{u}_1 u_3 \overline{u}_4) + 2|u_1|^2|u_4|^2)$





- The interior lines represent the images of families of hyperbolic singular points or elliptic singular points.
  - Thus this is not a semitoric family.



- The interior lines represent the images of families of hyperbolic singular points or elliptic singular points.
  - Thus this is not a semitoric family.
  - ► For t > t<sup>+</sup> this is a hypersemitoric system (as in Hohloch-P. 2021)



- The interior lines represent the images of families of hyperbolic singular points or elliptic singular points.
  - Thus this is not a semitoric family.
  - ► For t > t<sup>+</sup> this is a hypersemitoric system (as in Hohloch-P. 2021)
  - Similar to Dullin-Pelayo (2016).
### A system with two focus-focus points

Another semitoric polygon:



### A system with two focus-focus points

Another semitoric polygon:



Think about coupled angular momenta again:



### A system with two focus-focus points

Another semitoric polygon:



Think about coupled angular momenta again:



The point NS passes through the interior and becomes focus-focus, can we do this with SN as well?

### A two parameter family

Let  $J = R_1 z_1 + R_2 z_2$  and

$$\begin{cases} H_{0,0} &= x_1 x_2 + y_1 y_2 + z_1 z_2 \\ H_{1,0} &= z_1 \\ H_{0,1} &= z_2 \\ H_{1,1} &= x_1 x_2 + y_1 y_2 - z_1 z_2 \end{cases}$$

and

### A two parameter family

Let  $J = R_1 z_1 + R_2 z_2$  and

$$\begin{cases} H_{0,0} &= x_1 x_2 + y_1 y_2 + z_1 z_2 \\ H_{1,0} &= z_1 \\ H_{0,1} &= z_2 \\ H_{1,1} &= x_1 x_2 + y_1 y_2 - z_1 z_2 \end{cases}$$

and

$$H_{s_1,s_2} = (1-s_2)\Big((1-s_1)H_{0,0} + s_1H_{1,0}\Big) + s_2\Big((1-s_1)H_{0,1} + s_1H_{1,1}\Big).$$

Then

### A two parameter family

Let  $J = R_1 z_1 + R_2 z_2$  and

$$\begin{cases} H_{0,0} &= x_1 x_2 + y_1 y_2 + z_1 z_2 \\ H_{1,0} &= z_1 \\ H_{0,1} &= z_2 \\ H_{1,1} &= x_1 x_2 + y_1 y_2 - z_1 z_2 \end{cases}$$

and

$$H_{s_1,s_2} = (1-s_2)\Big((1-s_1)H_{0,0} + s_1H_{1,0}\Big) + s_2\Big((1-s_1)H_{0,1} + s_1H_{1,1}\Big).$$

Then

#### Theorem (Hohloch-P., 2018)

Let  $R_1 = 1$  and  $R_2 = 2$ . Then  $(J, H_{\frac{1}{2}, \frac{1}{2}})$  is a semitoric integrable system with exactly two focus-focus points (and so is every system in an open neighborhood of these parameters).

### The semitoric polygons

The semitoric polygons for  $(J, H_{\frac{1}{2}, \frac{1}{2}})$  (minimal polygons of type (2)):





Image of  $(J, H_{s_1, s_2})$  for  $s_1, s_2 \in [0, 1]$ 

Image of  $(J, H_{s_1, s_2})$  for  $s_1, s_2 \in [0, 1]$ 









Obstructions CP<sup>2</sup>

P<sup>2</sup> Further questions

### Obstructions to this technique

Example:



Obstructions  $\mathbb{CP}^2$  Fu

P<sup>2</sup> Further guestions

### Obstructions to this technique





The right polygon does not correspond to a toric system!

Obstructions  $\mathbb{CP}^2$  Fu

### Obstructions to this technique





- The right polygon does not correspond to a toric system!
  - This means we cannot use a semitoric transition family in the same way (when the focus-focus point collides with the boundary)

Obstructions  $\mathbb{CP}^2$  Furt

P<sup>2</sup> Further questions

### Obstructions to this technique





- The right polygon does not correspond to a toric system!
  - This means we cannot use a semitoric transition family in the same way (when the focus-focus point collides with the boundary)
- But there are more difficulties too...

•  $F_t = (J, H_t)$  means that the underlying S<sup>1</sup>-manifold  $(M, \omega, J)$  is fixed.

### $Z_k$ -spheres

- $F_t = (J, H_t)$  means that the underlying S<sup>1</sup>-manifold  $(M, \omega, J)$  is fixed.
- The relationship between S<sup>1</sup>-spaces and semitoric systems was studied by Hohloch-Sabatini-Sepe.

### $Z_k$ -spheres

- $F_t = (J, H_t)$  means that the underlying S<sup>1</sup>-manifold  $(M, \omega, J)$  is fixed.
- The relationship between S<sup>1</sup>-spaces and semitoric systems was studied by Hohloch-Sabatini-Sepe.
- The preimage of this "line" is a  $Z_2$ -sphere.



- ►  $F_t = (J, H_t)$  means that the underlying  $S^1$ -manifold  $(M, \omega, J)$  is fixed.
- The relationship between S<sup>1</sup>-spaces and semitoric systems was studied by Hohloch-Sabatini-Sepe.
- The preimage of this "line" is a  $Z_2$ -sphere.



Points in Z<sub>k</sub>-spheres are automatically singular points of the integrable system, but in toric and semitoric systems lines of singular points cannot enter the interior of F(M).

▶  $\lambda$ ,  $\delta$ ,  $\gamma$  are parameters satisfying  $0 < \gamma < \frac{1}{4\lambda}$  and  $\delta > \frac{1}{2\gamma\lambda}$ .

• Let 
$$M = \mathbb{CP}^2 = N^{-1}(0)/S^1$$
 where

$$N = \frac{1}{2}(|z_1|^2 + |z_2|^2 + |z_3|^2) - \lambda$$

structions  $\mathbb{CP}^2$  Further quest

# A system on $\mathbb{CP}^2$

▶  $\lambda$ ,  $\delta$ ,  $\gamma$  are parameters satisfying  $0 < \gamma < \frac{1}{4\lambda}$  and  $\delta > \frac{1}{2\gamma\lambda}$ .

• Let 
$$M = \mathbb{CP}^2 = N^{-1}(0)/S^1$$
 where

$$N = \frac{1}{2}(|z_1|^2 + |z_2|^2 + |z_3|^2) - \lambda$$

#### Let

$$\begin{cases} J = \frac{1}{2}(|z_1|^2 - |z_2|^2) \end{cases}$$

▶  $\lambda$ ,  $\delta$ ,  $\gamma$  are parameters satisfying  $0 < \gamma < \frac{1}{4\lambda}$  and  $\delta > \frac{1}{2\gamma\lambda}$ .

• Let 
$$M = \mathbb{CP}^2 = N^{-1}(0)/S^1$$
 where

$$N = \frac{1}{2}(|z_1|^2 + |z_2|^2 + |z_3|^2) - \lambda$$

$$\begin{cases} J = \frac{1}{2} (|z_1|^2 - |z_2|^2) \\ H_t = 2\gamma \delta t \lambda^2 + (1 - 2t) \frac{|z_3|^2}{2} + 2\gamma t \left( \operatorname{Re}(z_1 z_2 \overline{z}_3^2) - \frac{\delta}{4} (|z_1|^2 + |z_2|^2)^2 \right) \end{cases}$$

▶  $\lambda$ ,  $\delta$ ,  $\gamma$  are parameters satisfying  $0 < \gamma < \frac{1}{4\lambda}$  and  $\delta > \frac{1}{2\gamma\lambda}$ .

• Let 
$$M = \mathbb{CP}^2 = N^{-1}(0)/S^1$$
 where

$$N = \frac{1}{2}(|z_1|^2 + |z_2|^2 + |z_3|^2) - \lambda$$

Let

$$\begin{cases} J = \frac{1}{2}(|z_1|^2 - |z_2|^2) \\ H_t = 2\gamma\delta t\lambda^2 + (1 - 2t)\frac{|z_3|^2}{2} + 2\gamma t \left( \operatorname{Re}(z_1 z_2 \overline{z}_3^2) - \frac{\delta}{4}(|z_1|^2 + |z_2|^2)^2 \right) \end{cases}$$

last term "pushes" the Z<sub>2</sub>-sphere to keep it on the boundary.

• The image of  $(J, H_t)$  for  $0 \le t \le 1$ :

• The image of  $(J, H_t)$  for  $0 \le t \le 1$ :



• The image of  $(J, H_t)$  for  $0 \le t \le 1$ :



For large t the system develops a flap, including hyperbolic-regular points and parabolic points

### A system on $\mathbb{CP}^{2^{r}}$

• The image of  $(J, H_t)$  for  $0 \le t \le 1$ :



- For large t the system develops a flap, including hyperbolic-regular points and parabolic points
- the transition point still changes EE to FF to EE, but it can't merge with the bottom boundary (the Z<sub>2</sub>-sphere) so instead it forms a flap.

ons  $\mathbb{CP}^2$  Further questions

Fibers in a Flap"



Obstructions  $\mathbb{CP}^2$  Further question



Obstructions C₽<sup>2</sup> Further question



Obstructions  $\mathbb{CP}^2$  Further question:



) $\mathbb{CP}^2$  Further question



)bstructions C₽² Further question



) $\mathbb{CP}^2$  Further question



)bstructions  $\mathbb{CP}^2$  Further question


# A system on $\mathbb{CP}^2$



# A system on $\mathbb{CP}^{2^{1}}$



### Theorem (Le Floch-P., "2022")

The family  $(\mathbb{CP}^2, n\omega_{FS}, F_t = (J, H_t))_{0 \le t \le 1}$  is

- of toric type when  $0 \le t < t^-$ ,
- semitoric with one focus-focus point when  $t^- < t < t^+$  and
- ► hypersemitoric with one flap including a single elliptic corner when t<sup>+</sup> < t ≤ 1.</p>

# A system on $\mathbb{CP}^2$



### Theorem (Le Floch-P., "2022")

The family  $(\mathbb{CP}^2, n\omega_{FS}, F_t = (J, H_t))_{0 \le t \le 1}$  is

- of toric type when  $0 \le t < t^-$ ,
- semitoric with one focus-focus point when  $t^- < t < t^+$  and
- ► hypersemitoric with one flap including a single elliptic corner when t<sup>+</sup> < t ≤ 1.</p>



# Minimal semitoric polygons



### Minimal semitoric polygons

But there is more to do…



Find explicit systems for the rest of the minimal models

- Find explicit systems for the rest of the minimal models
- Describe which semitoric systems can appear in semitoric families (using minimal models)

- Find explicit systems for the rest of the minimal models
- Describe which semitoric systems can appear in semitoric families (using minimal models)
- Classify hypersemitoric systems (or at least develop some invariants)

- ► Find explicit systems for the rest of the minimal models
- Describe which semitoric systems can appear in semitoric families (using minimal models)
- Classify hypersemitoric systems (or at least develop some invariants)
- Use semitoric polygons to investigate other properties of the system and underlying symplectic manifold (e.g. symplectic capacities)

- ► Find explicit systems for the rest of the minimal models
- Describe which semitoric systems can appear in semitoric families (using minimal models)
- Classify hypersemitoric systems (or at least develop some invariants)
- Use semitoric polygons to investigate other properties of the system and underlying symplectic manifold (e.g. symplectic capacities)
- Study various properties of the fibers (non-displacible?, Hamiltonian isotopic?, heavy or superheavy?, etc...)

## Thanks!



#### Theorem (Le Floch-P., "2022")

The family  $(\mathbb{CP}^2, n\omega_{FS}, F_t = (J, H_t))_{0 \le t \le 1}$  is

- of toric type when  $0 \le t < t^-$ ,
- semitoric with one focus-focus point when  $t^- < t < t^+$  and
- ► hypersemitoric with one flap including a single elliptic corner when t<sup>+</sup> < t ≤ 1.</p>





Some extra slides

## Minimal models

Around an elliptic-elliptic point can perform a blowup of toric type, by performing a T<sup>2</sup>-equivariant blow up with respect to f<sub>ε</sub> ◦ F (blowing down is the inverse operation)

# Minimal models

Around an elliptic-elliptic point can perform a blowup of toric type, by performing a T<sup>2</sup>-equivariant blow up with respect to f<sub>ε</sub> ∘ F (blowing down is the inverse operation)

#### Goal

Find all compact semitoric systems which do not admit a blowdown (minimal models).

Around an elliptic-elliptic point can perform a blowup of toric type, by performing a T<sup>2</sup>-equivariant blow up with respect to f<sub>ε</sub> ∘ F (blowing down is the inverse operation)

#### Goal

Find all compact semitoric systems which do not admit a blowdown (minimal models).

Then all systems can be obtained from these by performing a sequence of blowups.

### Minimal models: blowups and corner chops

Blowups correspond to a corner chop of the semitoric polygon.



### Minimal models: blowups and corner chops

Blowups correspond to a corner chop of the semitoric polygon.



 Semitoric minimal models were classified in terms of the semitoric helix invariant into types (1) - (7) in [P.-Pelayo-Kane, 2018]

Classical theory Semitoric families Beyond semitoric families

The polygons of minimal systems of types (1), (2), and (3):



• Type (3) is parameterized by  $k \in \mathbb{Z}$ .

Further questions

Classical theory Semitoric families Bevond semitoric families

The polygons of minimal systems of types (1), (2), and (3):



• Type (3) is parameterized by  $k \in \mathbb{Z}$ .

An example of type (1) on CP<sup>2</sup> is in [Chiscop-Dullin-Efstathiou-Waalkens, 2019].

Further questions

Classical theory Semitoric families Bevond semitoric families

The polygons of minimal systems of types (1), (2), and (3):



• Type (3) is parameterized by  $k \in \mathbb{Z}$ .

An example of type (1) on CP<sup>2</sup> is in [Chiscop-Dullin-Efstathiou-Waalkens, 2019].

▶ Goals: Find systems of types (2) and (3) (for all  $k \in \mathbb{Z}$ ).

Classical theory Semitoric families Bevond semitoric families

The polygons of minimal systems of types (1), (2), and (3):



• Type (3) is parameterized by  $k \in \mathbb{Z}$ .

An example of type (1) on CP<sup>2</sup> is in [Chiscop-Dullin-Efstathiou-Waalkens, 2019].

▶ Goals: Find systems of types (2) and (3) (for all  $k \in \mathbb{Z}$ ).

# Reduction by $\mathbb{S}^1$ -action

▶ Reduce by the S<sup>1</sup>-action generated by J at level J = j to get M<sub>j</sub><sup>red</sup> = J<sup>-1</sup>(j)/S<sup>1</sup>

# Reduction by $\mathbb{S}^1$ -action

- ▶ Reduce by the S<sup>1</sup>-action generated by J at level J = j to get M<sub>j</sub><sup>red</sup> = J<sup>-1</sup>(j)/S<sup>1</sup>
- At regular values of J: non-degenerate  $\Leftrightarrow H_t^{\text{red},j}$  is Morse.

# Reduction by S<sup>1</sup>-action

- ▶ Reduce by the S<sup>1</sup>-action generated by J at level J = j to get M<sub>j</sub><sup>red</sup> = J<sup>-1</sup>(j)/S<sup>1</sup>
- At regular values of J: non-degenerate  $\Leftrightarrow H_t^{\text{red},j}$  is Morse.
- What is  $M_j^{\text{red}}$ ?

structions  $\mathbb{CP}^2$  Further que

# Reduction by $S^1$ -action

- ▶ Reduce by the S<sup>1</sup>-action generated by J at level J = j to get M<sub>j</sub><sup>red</sup> = J<sup>-1</sup>(j)/S<sup>1</sup>
- At regular values of J: non-degenerate  $\Leftrightarrow H_t^{\text{red},j}$  is Morse.
- What is  $M_i^{\text{red}}$ ?

• If  $j \neq j_{\text{max/min}}$  and is regular then  $M_i^{\text{red}}$  is diffeom. to  $\mathbb{S}^2$ .

ostructions  $\mathbb{CP}^2$  Further que

# Reduction by $S^1$ -action

- ▶ Reduce by the S<sup>1</sup>-action generated by J at level J = j to get M<sub>j</sub><sup>red</sup> = J<sup>-1</sup>(j)/S<sup>1</sup>
- At regular values of J: non-degenerate  $\Leftrightarrow H_t^{\text{red},j}$  is Morse.
- What is  $M_i^{\text{red}}$ ?
  - If  $j \neq j_{\max/\min}$  and is regular then  $M_i^{\text{red}}$  is diffeom. to  $\mathbb{S}^2$ .
  - If  $j \neq j_{\text{max/min}}$  and is singular then  $M_i^{\text{red}}$  is homeom. to  $\mathbb{S}^2$ ;

# Reduction by $S^1$ -action

- ▶ Reduce by the S<sup>1</sup>-action generated by J at level J = j to get M<sub>j</sub><sup>red</sup> = J<sup>-1</sup>(j)/S<sup>1</sup>
- At regular values of J: non-degenerate  $\Leftrightarrow H_t^{\text{red},j}$  is Morse.
- What is  $M_i^{\text{red}}$ ?
  - If  $j \neq j_{\max/\min}$  and is regular then  $M_j^{\text{red}}$  is diffeom. to  $\mathbb{S}^2$ .
  - If  $j \neq j_{\max/\min}$  and is singular then  $M_j^{\text{red}}$  is homeom. to  $\mathbb{S}^2$ ;
  - ▶ If  $j = j_{\max/\min}$  then  $M_j^{\text{red}}$  is diffeomorphic to  $S^2$  or a point.

ostructions CP<sup>2</sup> Further questions

# Reduction by $S^1$ -action

- ▶ Reduce by the S<sup>1</sup>-action generated by J at level J = j to get M<sub>j</sub><sup>red</sup> = J<sup>-1</sup>(j)/S<sup>1</sup>
- At regular values of J: non-degenerate  $\Leftrightarrow H_t^{\text{red},j}$  is Morse.
- What is  $M_i^{\text{red}}$ ?
  - If  $j \neq j_{\max/\min}$  and is regular then  $M_i^{\text{red}}$  is diffeom. to  $\mathbb{S}^2$ .
  - If  $j \neq j_{\max/\min}$  and is singular then  $M_j^{\text{red}}$  is homeom. to  $\mathbb{S}^2$ ;
  - ▶ If  $j = j_{\max/\min}$  then  $M_j^{\text{red}}$  is diffeomorphic to  $\mathbb{S}^2$  or a point.



# Reduction by $S^1$ -action

- ▶ Reduce by the S<sup>1</sup>-action generated by J at level J = j to get M<sub>j</sub><sup>red</sup> = J<sup>-1</sup>(j)/S<sup>1</sup>
- At regular values of J: non-degenerate  $\Leftrightarrow H_t^{\text{red},j}$  is Morse.
- What is  $M_i^{\text{red}}$ ?
  - If  $j \neq j_{\max/\min}$  and is regular then  $M_i^{\text{red}}$  is diffeom. to  $\mathbb{S}^2$ .
  - ▶ If  $j \neq j_{\max/\min}$  and is singular then  $M_j^{\text{red}}$  is homeom. to  $\mathbb{S}^2$ ;
  - ▶ If  $j = j_{\max/\min}$  then  $M_j^{\text{red}}$  is diffeomorphic to  $\mathbb{S}^2$  or a point.



• If  $dJ_j = 0$  get a 'teardrop' or 'pinched sphere' singular space.



 $\mathbb{CP}^2$  Further questions



 $\mathbb{CP}^2$  Further questions





