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Mirror Symmetry for Fano varieties



Approaches to Mirror Symmetry for Fano varieties

Idea
Mirror Symmetry corresponds to a Fano variety X its
Landau–Ginzburg model — a quasi-projective variety Y equipped
with a regular function w : Y → C such that its fibres are mirror
dual to anticanonical sections of the Fano variety X .

Homological MS (Kontsevich, Auroux, Katzarkov, Seidel. . . )
For a Fano variety X and a smooth anticanonical divisor V the log
Calabi–Yau pair (X ,V ) has a mirror log Calabi–Yau pair (Z ,D).
Compactification of X \ V to X corresponds to equipping
Y = Z \ D with a proper function w : Y → C.
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Approaches to Mirror Symmetry for Fano varieties

Hodge-theoretic MS (Givental, Golyshev, Iritani. . . )
The regularized quantum cohomology D-module of X can be
identified with the Gauss–Manin connection on fibres of w.

Toric MS (Batyrev–Kim–Ciocan-Fontanine–van Straten,
Eguchi–Hori–Xiong. . . )
If X is a Fano variety, and X admits a degeneration to a Fano toric
variety T , then the mirror of X admits a torus chart (C∗)n to
which w : Y → C restricts to give a Laurent polynomial p whose
Newton polytope is the anticanonical polytope of T .
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Approaches to Mirror Symmetry for Fano varieties

Toric Landau–Ginzburg models (Galkin–Golyshev–
Przyjalkowski. . . )
A toric Landau–Ginzburg model is a Laurent polynomial p s.t.

• the periods of the fibres of p : (C∗)dim(X ) → C correspond to
the Gromov–Witten invariants of the Fano variety X ;

• the family p : (C∗)dim(X ) → C admits a fibrewise
compactification w : Y → C such that Y is a smooth
non-compact Calabi–Yau variety;

• there should exist a degeneration of X to a toric variety T

whose fan polytope is the Newton polytope of p.

Convention
We will often identify the Laurent polynomial p with the family
p : (C∗)dim(X ) → C or its compactification w : Y → C.
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Approaches to Mirror Symmetry for Fano varieties

Fanosearch project (Fanosearch team)
An inverse process: by characterizing the Laurent polynomials that
appear in this way, one should be able to create a family of Fano
manifolds starting from the data of a Laurent polynomial of
appropriate type by applying deformation-theoretic techniques.

The main challenge has been to characterize which polynomials
correspond to Fano varieties. The current expectation is that there
is a bijection between toric Gorenstein Fano varieties and mutation
classes of rigid maximally mutable Laurent polynomial.
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Mirror Symmetry for Fano threefolds

Theorem (Shokurov)
A general anticanonical section of a Fano threefold is a K3 surface.

Theorem (Beauville)
For a smooth Fano threefold X and its general anticanonical
section V the restriction map Pic(X )

res−→ Pic(V ) is an
isomorphism. The deformation space of pairs (X ,V ) forms a
complete family of Pic(X )-polarized K3 surfaces.

Theorem (Ilten–Lewis–Przyjalkowski, Fanosearch team)
Toric Landau–Ginzburg models exist for smooth Fano threefolds.

Claim
There exists a mirror-dual statement to Beauville’s theorem for
toric Landau–Ginzburg models of smooth Fano threefolds.
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Mirror Symmetry of
lattice-polarized K3 surfaces



Lattice polarizations of K3 surfaces

Notation

We refer to the lattice LK3 = H⊕3 ⊕ E8(−1)⊕2 as the K3 lattice.

Proposition

For any complex K3 surface S we have H2(S ,Z) ≃ LK3.

Definition

Let L be an even lattice of signature (1, r). We say that a K3
surface S is L-polarized if there is a primitive embedding
ι : L ↪→ Pic(S) whose image contains an ample class.

A family ϖ : S → B of K3 surfaces is L-polarized if there is a
trivial sub-local system L ⊆ R2ϖ∗ZS which induces an
L-polarization on each fibre of the family ϖ.
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Lattice polarizations of K3 surfaces

Theorem (Dolgachev)
Let L be a lattice such that there exists a unique (up to isometry)
primitive embedding into the K3 lattice LK3. Then there exists a
coarse moduli space ML of L-polarized K3 surfaces.

Remark
There exist sufficient conditions on a lattice L to have a primitive
embedding into the K3 lattice, and to ensure that this embedding
is unique. More generally, the coarse moduli space of L-polarized
K3 surfaces has finite number of irreducible components
corresponding to equivalence classes of embeddings of L into LK3.
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Dolgachev–Nikulin duality

Definition
Let L ⊂ LK3 be a primitive sublattice. Assume that the orthogonal
complement admits the decomposition L⊥ = H ⊕ L∨ for some
lattice L∨. We refer to L∨ as the Dolgachev–Nikulin dual to L.

Idea
Dolgachev–Nikulin duality is a form of Mirror Symmetry for
lattice-polarized K3 surfaces: for a primitive sublattice L ⊂ LK3 it
interchanges complete families of L and L∨-polarized K3 surfaces.

Theorem (Dolgachev)

Let F and F∨ be complete families of L- and L∨-polarized K3
surfaces. We have dim(F) = ρ(S), where S ∈ F∨ is general.

Corollary

Let X be a smooth Fano threefold. Then dim(MPic(X )∨) = ρ(X ).
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Dolgachev–Nikulin duality for smooth Fano threefolds

Definition

A compactification of the family p : (C∗)n → C to a family
f : Z → P1, where Z is smooth, and −KZ ∼ f−1(∞), is called a
log Calabi–Yau compactification.

Theorem (Przyjalkowski)
Toric Landau–Ginzburg models for smooth Fano threefolds admit a
log Calabi–Yau compactification.

Conjecture
Let X be a smooth Fano threefold, and F be a general fibre of its
toric Landau–Ginzburg model f : Z → P1. There exists an isometry

Pic(X )∨ ∼= im
(
H2(Z ,Z) res−→ H2(F ,Z)

)
.
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Dolgachev–Nikulin duality for smooth Fano threefolds

Theorem (Ilten–Lewis–Przyjalkowski)

Conjecture holds for Fano threefolds with ρ(X ) = 1.

Definition (see Cheltsov–Przyjalkowski, 2018)

Let X be a smooth Fano threefold with ρ(X ) > 1. We refer to the
toric Landau–Ginzburg model of the Fano threefold X used in loc.
cit. as a standard Landau–Ginzburg mirror of X .

Remark (see Akhtar–Coates–Galkin–Kasprzyk)
If −KX is very ample, then a standard LG model is given by a
Minkowski polynomial. They are unique up to explicitly described
birational transformations of (C∗)dim(X ) called mutations.

Theorem (DHKOP)
Conjecture holds for standard toric Landau–Ginzburg models. In
each case the dual lattice Pic(X )∨ was explicitly constructed.
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Tame compactifications and
deformation theory of
Landau–Ginzburg models



Tame compactifications

Definition (Katzarkov–Kontsevich–Pantev)
A proper, tame compactified Landau–Ginzburg model is a triple
(Z ,D, f) consisting of a smooth projective variety Z , a simple
normal crossings divisor D, and a morphism f : Z → P1 so that
f∗(∞) = D, where D is an anticanonical divisor of Z .

We put Y = Z \ D and denote by w the restriction of f to Y .

Remark
The notion of log Calabi–Yau compactification differs from the
notion of tame compactification by not requiring snc condition for
the fiber over infinity. However, in most of known cases of log
Calabi–Yau compactifications, in particular, for standard toric
Landau–Ginzburg models, the fibers over infinity are snc. These
notions may become different if we allow singularities over infinity.
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Tame compactifications

Theorem (Katzarkov–Kontsevich–Pantev (1), DHKOP (2))

Suppose (Z ,D, f) is a tame compactified Landau–Ginzburg model
of dimension 3 so that (Z ,D) is a log Calabi–Yau pair satisfying
certain minor topological conditions. Let F be a smooth fibre of f.

1. The forgetful map Def(Z ,D, f) → Def(Z ) is surjective, hence
deformations of Z are unobstructed.

2. The forgetful map Def(Z ,F ) → Def(F ) is a submersion of
relative dimension h2,1(Z ) onto the subspace of Def(F )
preserving the polarization by monodromy invariants LZ .

Consequently, for a general deformation of (Z ,D, f) and general
fibre F of f, the Picard lattice of F is isomorphic to LZ .
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Specialization to the case of Laurent polynomials

Let us recall that a toric Landau–Ginzburg model for a smooth Fano
threefold with with very ample anticanonical class is given by a
Minkowski polynomial: a three-dimensional Laurent polynomial with
reflexive Newton polytope and special integral coefficients.

Theorem (DHKOP)
Let X be a smooth Fano threefold with very ample anticanonical
class, and let (Z ,D, f) be its standard Landau–Ginzburg model,
obtained by partially compactifying the corresponding Laurent
polynomial p of X . There is a ρ(X )-dimensional family of
Landau–Ginzburg models deformation equivalent to (Z ,D, f) s.t.

1. Any small deformation of Z is obtained by deforming p.

2. The deformation space of pairs (Z ,F ) form a complete family
of Pic(X )∨-polarized K3 surfaces.

14
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Minkowski polynomial: a three-dimensional Laurent polynomial with
reflexive Newton polytope and special integral coefficients.
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Geometry of moduli spaces

Let ML be the Baily–Borel compactification of ML. It is obtained
by adding points called type III boundary components and curves
called type II boundary components to ML.

Theorem (Scattone)
The type III (respectively, type II) boundary components are in
set-theoretic bijection between O+(L⊥) equivalence classes of
rank 1 (respectively, rank 2) totally isotropic sublattices of L⊥.

Remark
The existence of a type III boundary point in ML implies that the
lattice L⊥ admits a totally isotropic sublattice of rank 1. In fact,
Dolgachev–Nikulin mirror symmetry suggests more, namely, that
there is an embedding of the lattice H into L⊥.
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Geometry of moduli spaces

Definition
Suppose V is a Q-local system over a nonempty Zariski-open
subset of P1. Let i : U → P1 denote the canonical embedding. We
say that V is extremal if H1(P1, i∗V) = 0.

Given a map ϕ : P1 → MLZ , there is a finite number of variations
of Hodge structure over ϕ−1(MLZ ) for which the period map is ϕ.
We say that the map ϕ is extremal if one of these variations of
Hodge structure has extremal underlying local system.

Corollary (DHKOP)
Suppose X is a Fano threefold with very ample anticanonical
bundle. Then the moduli space of Pic(X )∨-polarized K3 surfaces
admits a type III boundary point p∞ and a ruling by extremal
curves passing through p∞.
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Thank you!
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