Graph potentials and mirrors of moduli of rank two bundles on curves.

Swarnava Mukhopadhyay
(joint work with Pieter Belmans and Sergey Galkin)

August 4, 2022

Moduli space

Consider the smooth intersection of two quadrics Q_{1} and Q_{2}

$$
X_{2,2} \subset \mathbb{P}^{5}
$$

This is a Fano three fold of Picard number one.

Reinterpretation as moduli space

- C will denote a smooth projective curve of genus $g \geq 2$.
- \mathbb{L} be a fixed line bundle on C.
- $M_{C}(\mathbb{L})$ will denote the moduli space of semi-stable rank two bundles with determinant \mathbb{L}.

Properties

- For any \mathbb{L} of odd degree (respectively even), the moduli spaces $M_{C}(\mathbb{L})$'s are isomorphic. We drop the \mathbb{L} in the notation and simply denote $M_{C}^{ \pm}$.
- If C is hyperelliptic, then the moduli space has a more concrete description (Narasimhan-Ramanan, Newstead ($g=2$), Desale-Ramanan).

$$
M_{C}^{-}=\operatorname{OGr}_{q_{1}}(g-1,2 g+2) \cap \operatorname{OGr}_{q_{2}}(g-1,2 g+2) .
$$

- M_{C}^{-}is smooth, Fano of dimension $3(g-1)$. Moreover (Drezet-Narasimhan)

$$
\operatorname{Pic}\left(M_{C}^{ \pm}\right)=\mathbb{Z} \Theta
$$

The canonical class $K_{M_{C}^{-}}=-2[\Theta]$, i.e. M_{C}^{-}is of index two.

Properties... continued

- Deformations of $M_{C}^{ \pm}$are controlled by deformations of C.
- The spaces $H^{0}\left(M_{C}^{ \pm}, \Theta^{\otimes \ell}\right)$ are known as conformal blocks and can be constructed as quotient of representations of $\widehat{S L}_{2}(\mathbb{C}((t)))$. (Beauville-Laszlo, Faltings, Laszlo-Sorger, Kumar-Narasimhan-Ramananathan)
- As C varies in $\overline{\mathcal{M}}_{g}$, the spaces $H^{0}\left(M_{C}^{ \pm}, \Theta^{\otimes \ell}\right)$ form a vector bundle (Tsuchiya-Ueno-Yamada/Wess-Zumino-Witten). denoted by $\mathbb{V}_{ \pm}(\mathfrak{s l}(2), \ell)$ along with generalization to the parabolic bundles set-up.

Mirror Symmetry for Fano X and LG-models (Y, w)

B-side

- The bounded derived category $\mathbf{D}^{b}(X)$ and semi orthogonal decompositions.
- Matrix factorization category MF($Y, w)$ and their decomposition with respect to the critical values of w.

A-side

- Fukaya-Seidel category FS (Y, w) of a Landau-Ginzburg model.
- Fukaya Category Fuk(X), quantum cohomology ring $Q H^{*}(X)$ and decomposition with respect to $c_{1}(X) \star_{0}$.

Decompositions: Eigen Values $\left(c_{1}(M) \star_{0}\right)=$ Critical Values (w).

Quantum periods X

Let $X_{0, k, m}$ denote the Kontsevich moduli space of stable maps f from a rational curve with k marked points and $\operatorname{deg} f^{*}\left(-K_{X}\right)=m$.

Definition

The $m \geq$ 2-th descendent Gromov Witten number

$$
p_{m}=\int_{X_{0,1, m}} \psi^{m-2} \mathrm{ev}_{1}^{-1}([p t])
$$

where ψ is the Psi class on $X_{0,1, m}$ and $\mathrm{ev}_{1}: X_{0,1, m} \rightarrow X$.
Compute

$$
\widehat{G}_{X}(t):=\sum_{m \geq 0} m!p_{m} t^{m} \quad \text { for } p_{0}=1, p_{1}=0
$$

Weak LG models: $Y=\mathbb{C}^{\operatorname{dim} X}$

Definition

Let $W:\left(\mathbb{C}^{\times}\right)^{n} \rightarrow \mathbb{C}$ be a Laurent polynomial. A classical period of W is the following Laurent series.

$$
\pi_{W}(t)=\left(\frac{1}{2 \pi \sqrt{-1}}\right)^{n} \int_{\left|x_{1}\right|=\cdots=\left|x_{n}\right|=1} \frac{1}{1-t W\left(x_{1}, \ldots, x_{n}\right)} \operatorname{dlog} \vec{x}
$$

Quantum=classical

Given X, can we find W such that

$$
\widehat{G}_{X}(t)=\pi_{W}(t)
$$

Example

- If $X=\mathbb{P}^{3}$, then $W=x+y+z+\frac{1}{x y z}$ and

$$
G_{X}(t)=\sum_{d=0}^{\infty} \frac{t^{4 d}}{(d!)^{4}}
$$

- If X blow up of a line in \mathbb{P}^{3}, then $W=x+y+z+\frac{z}{x}+\frac{1}{y z}$.
- If $X=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{2}} \oplus \mathcal{O}_{\mathbb{P}^{2}}(2)\right)$, then $W=x+y+z+\frac{z^{2}}{x y}+\frac{1}{z}$.

Remark

Observe that in all these cases X is a toric variety and the Newton polytope of W is the Fan polytope of the toric variety.

Finding mirror potentials W

- (Hori-Vafa, Givental) If X is a smooth toric Fano then we can take $W:\left(\mathbb{C}^{\times}\right)^{\operatorname{dim} X} \rightarrow \mathbb{C}$ to the Newton polynomial of the Fan polytope. Similarly W is known for Fano complete intersection in a toric variety.
- (Coates-Corti-Galkin-Kasprzyk) If X is a smooth Fano three fold, then quantum periods are known.
- Many other results due to works of

Batryrev-Ciocan-Fontanine-Kim-van-Straten, Bondal-Galkin, Coates, Przyalkowski,...

Goal

- Find a weak LG mirror W for $M_{C}^{-}(2)$?
- Give an efficient way to compute periods of W.
- Compare the critical values and critcal sets to that of quantum cohomology of $M_{C}^{-}(2)$.
- Give evidence for natural decomposition of the derived category of $M_{C}^{-}(2)$.

Graph potentials and trinion potentials

$$
\begin{aligned}
& W_{\bullet}=a b c+\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b} \\
& W_{\bullet}=\frac{1}{a b c}+\frac{b c}{a}+\frac{a c}{b}+\frac{a b}{c} \\
& W_{\bullet}\left(a^{ \pm}, b^{ \pm}, c^{ \pm}\right)=W_{\bullet}\left(a^{\mp}, b^{\mp}, c^{\mp}\right)
\end{aligned}
$$

Graph Potential

1. Trivalent graph correspond to decompositon of a surface into pair of pants.
2. Trivalent graphs also correspond to a strata in $\bar{M}_{g, n}$ of maximally degenerate curves.

Definiton

Let (Γ, c) be a colored trivalent graph and $c: V(\Gamma) \rightarrow\{ \pm 1\}$, define

$$
W_{\Gamma, c}:=\sum_{v \in V(\Gamma)} W_{v, c(v)}
$$

Examples: $\mathbf{g}=\mathbf{2}$

$\left(b^{2} a+\frac{2}{a}+\frac{a}{b^{2}}\right)+\left(\frac{1}{a c^{2}}+2 a+\frac{c^{2}}{a}\right)$

$$
\begin{aligned}
& \left(a b c+\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b}\right) \\
& +\left(\frac{1}{a b c}+\frac{b c}{a}+\frac{a c}{b}+\frac{a b}{c}\right)
\end{aligned}
$$

Example $g=3$

$$
\begin{array}{r}
a d f+\frac{f}{a d}+\frac{a}{d f}+\frac{d}{a f}+ \\
b d e+\frac{e}{b d}+\frac{b}{e d}+\frac{b}{d e} \\
+a b c+\frac{b}{a c}+\frac{c}{a b}+\frac{a}{b c} \\
+\left(\frac{1}{c e f}+\frac{e f}{c}+\frac{c f}{e}+\frac{c e}{f}\right)
\end{array}
$$

Theorem (Belmans-Galkin-M)

Let $W \in \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{e}^{ \pm} ; y_{1}^{ \pm} \ldots, y_{\ell}^{ \pm}\right]$be a Laurent polynomial, we will denote by $\left[W^{m}\right]$ the coeffiecient of $x_{1}^{0} \ldots x_{e}^{0}$ in the m-th power of W.

We have the following result about graph potentials.

- The constant term $\left[\left(W_{\Gamma, c}\right)^{m}\right]$ depends only on the genus g of Γ and total parity ϵ of the coloring c.

Theorem on TQFT

Let $\Sigma_{g, n}$ be an oriented surface of genus g with n boundary components with the condition that $2 g+n>2$. To every pairs of pants decomposition of $\Sigma_{g, n}$, with dual graph (Γ, n, c) the assignment defines a TQFT:

$$
\mathcal{Z}_{\Sigma_{g, n}}:=\bigotimes_{e \in E_{\text {int }}}\langle,\rangle_{a, b}\left(\bigotimes_{v \in V} \exp \left(t W_{ \pm}\left(x_{i}, x_{j}, x_{k}\right)\right), \in\left(\ell^{2}(\mathbb{Z})\right)^{\otimes n}\right.
$$

where $E_{i n t}$ are internal edges of Γ, a, b are vertices adjacent to an edge $e \in E_{i n t}$, and i, j, k are edges incident to a vertex v of Γ.

Explicit Formula

Let $\operatorname{Bes}(z):=\sum_{m \geq 0} \frac{1}{m!^{2}} z^{2 m}$ be the Bessel function.

Theorem

- For Γ with no half edges (compact surfaces):

$$
\begin{gathered}
\sum_{m \geq 0} \frac{\left[\left(W_{\Gamma, c}\right)^{m}\right]_{\text {const }}}{m!} t^{m}=\operatorname{Trace}\left(A^{g-1} S^{\epsilon+g}\right) \text {, where } \\
S\left(x^{n}\right):=x^{-n} \text { and } A=\operatorname{Bes}(t(x+y)) \cdot \operatorname{Bes}\left(t\left(x^{-1}+y^{-1}\right)\right)
\end{gathered}
$$

Example: $\mathrm{g}=2$

$$
\sum_{n \geq 0} \frac{(2 n!)^{2}}{n!^{6}} t^{2 n}
$$

B side: Graph potentials and $M_{C}^{ \pm}(2)$

Theorem (Belmans-Galkin-M:20)

- The moduli space $M_{C}^{-}(2)\left(r e s p ~ M_{C}^{+}(2)\right)$ has a natural toric $X_{\Gamma, c}$ degeneration associated to a trivalent graph 「 whose Newton polynomial is the graph potential $W_{\Gamma, c}$.

Remark: The degeneration (refining Manon:16) uses conformal blocks.

- If Γ has no separating edges, then $X_{\Gamma, c}$ has terminal singularities and hence
- (Kiem-Li:04) $M_{C}^{+}(2)$ has terminal singularities for a generic curve.

A side: Graph potentials as weak LG models

Theorem: Belmans-Galkin-M

The m-th descendent Gromov-Witten invariant of $M_{C}^{-}(2)$ is $\frac{\left[\left(W_{\Gamma, c}\right)^{m}\right]_{c o n s t}}{m!}$ for any closed graph ($\left.\Gamma, c\right)$ of genus g with odd parity. In particular

$$
\widehat{G}_{M_{C}^{-}(2)}(t)=\pi_{W_{r, c}}(t)
$$

Remark: Proposal of Eguchi-Hori-Xiong, for constructing mirror potential of Fano varieties. (Earlier: Abouzaid, Aroux, Coates-Corti-Galkin, FOOO, Givental, Konstevich, Katzarkov, Przylkowski, Nishinou-Nohara-Ueda, Orlov, Seidel).

Conjectural semi-orthogonal decomposition

Conjecture: Belmans-Galkin-M, Narasimhan

Let C be a smooth curve of genus g

$$
\begin{aligned}
\mathbf{D}^{b}\left(M_{C}^{-}(2)\right) & =\left\langle\mathbf{D}^{b}(p t), \mathbf{D}^{b}(p t), \mathbf{D}^{b}(C), \mathbf{D}^{b}(C), \cdots\right. \\
& \left.\cdots, \mathbf{D}^{b}\left(\operatorname{Sym}^{g-2} C\right), \mathbf{D}^{b}\left(\operatorname{Sym}^{\mathrm{g}-2} C\right), \mathbf{D}^{b}\left(\operatorname{Sym}^{g-1} C\right)\right\rangle
\end{aligned}
$$

Theorem: Belmans-M:19

$$
\mathbf{D}^{b}\left(M_{C}^{-}(r)\right)=\left\langle\mathbf{D}^{b}(p t), \mathbf{D}^{b}(p t), \mathbf{D}^{b}(C), \mathbf{D}^{b}(C), \mathcal{B}\right\rangle
$$

where $M_{C}^{-}(r)$ is the moduli space of rank r bundles with fixed determinant of degree one.

Remark: Lee-Moon:22 has generalized BM:19 for any coprime degree.

Theorem: Muñoz

The quantum multiplication \star_{0} by $c_{1}\left(M_{C}^{-}\right)$on quantum cohomology ring $Q H^{*}\left(M_{C}\right)$ has the following eigen-space decomposition:

$$
Q H^{*}\left(M_{C}^{-}\right)=\bigoplus_{m=1-g}^{g-1} H_{m}
$$

- The eigen-values are

$$
8(1-g), 8(2-g) \sqrt{-1}, 8(3-g), \ldots, 8(g-3), 8(g-2) \sqrt{-1}, 8(g-1)
$$

- H_{m} are isomorphic as vector spaces to $H^{*}\left(\operatorname{Sym}^{g-1-|m|} C\right)$.

Remark: This decomposition is equivariant with respect to the natural $\mathrm{Sp}(2 g)$ action on both sides.

BGM-N conjectures and Graph potentials

Theorem: Belmans-Galkin-M

Let Γ be the necklace graph with one colored vertex, then the set of critical values of $W_{\Gamma, c}$
$\{-8(g-1),-8 \sqrt{-1}(g-2), \ldots, 0, \ldots, 8 \sqrt{-1}(g-2), 8(g-1)\}$
equals the eigen values (Muñoz) of quantum multiplication by $c_{1}\left(M_{C}^{-}(2)\right)$.
Moreover the dimensions of the critical set with absolute critical value $8(g-1-k)$ is k.

Recent updates

- Theorem: Bondal-Orlov:95

If $g=2$, then $\mathbf{D}^{b}\left(M_{C}^{-}(2)\right)=\left\langle\mathbf{D}^{b}(p t), \mathbf{D}^{b}(C), \mathbf{D}^{b}(p t)\right\rangle$.

- Theorem: Narasimhan:15, Kuznetsov-Fonarev:18 $\mathbf{D}^{b}\left(M_{C}^{-}(2)\right)=\left\langle\mathbf{D}^{b}(p t), \mathbf{D}^{b}(C), \mathcal{C}\right\rangle$.
- Theorem: Lee-Narasimhan

If C is not hyperelliptic, then
$\mathbf{D}^{b}\left(M_{C}^{-}(2)\right)=\left\langle\mathbf{D}^{b} \operatorname{Sym}^{2}(C), \mathcal{C}^{\prime}\right\rangle$.

- Theorem: Tevelev-Torres
$\mathbf{D}^{b}\left(M_{C}^{-}(2)\right)=\left\langle\mathbf{D}^{b}(p t), \mathbf{D}^{b}(p t), \cdots, \mathbf{D}^{b}\left(\mathrm{Sym}^{\mathrm{g}-1} \mathrm{C}\right), \mathcal{A}\right\rangle$.
- Theorem: Xu-Yau
$\mathbf{D}^{b}\left(M_{C}^{-}(2)\right)=\left\langle\left\{\Theta^{\ell} \otimes \mathbf{D}^{b}\left(\operatorname{Sym}^{i}(C)\right)\right\}_{0 \leq \ell<2, i<g-\ell}, \mathcal{A}^{\prime}\right\rangle$ with some generalizations for principal bundles.

Outline of the general machinery: Step I

Let $\mathcal{X} \rightarrow B$ be a degeneration of a smooth Fano X such that the degeneration preserves second Betti numbers and X_{0} is toric.

- Consider the moment map $\mu: X_{0} \rightarrow P \subset \mathbb{R}^{\operatorname{dim} X_{0}}$ and construct a monotone Lagrangian torus $L=\mu^{-1}(u)$ in X_{0}.
- Using the toric degeneration and symplectic parallel transport, we construct a monotone Lagrangian torus in X (Nishinou-Nohara-Ueda, Harada-Kaveh).

cont..

Theorem: Belmans-Galkin-M

The Newton polytope of the Floer potential $m_{0}(L)$ counting Maslov index two disc in X with boundary in L equals that of the fan polytope of X_{0}.
In particular if the fan polytope has no non-vertex lattice points, then we can compute $m_{0}(L)$
(Galkin-Mikhalkin, generalizing Nishinou-Nohara-Ueda).
Quantum periods v/s Floer potential
It is known that (Tonkonog, Bondal-Galkin, Mikhalkin) that $G_{M_{C}^{-}(2)}(t)$ can be computed via periods of $m_{0}(L)$.

Step II: Construct a toric degeneration of $M_{C}^{-}(2)$

Let (Γ, c) be a trivalent graph with one (zero) colored vertex of genus g. The moduli spaces $M_{C}^{-}(2)\left(M_{C}^{+}(2)\right.$-even degree determinant) degenerates to a toric variety $X_{\Gamma, c}$. whose moment polytope in $\mathbb{R}^{|E|}$ is given by:

If $c(v)=(-1)^{\epsilon}$,

- $(-1)^{\epsilon}(x+y+z) \geq-1$.
- $(-1)^{\epsilon}(x-y-z) \geq-1$.
- $(-1)^{\epsilon}(-x-y+z) \geq-1$.
- $(-1)^{\epsilon}(-x+y-z) \geq-1$.
with respect to a lattice L_{Γ} in $\mathbb{Z}^{|E|}$ of index 2^{g}.

Steps...

- Consider the section ring $\oplus_{\ell>0} H^{0}\left(M_{C}^{ \pm}, \Theta^{\ell}\right)$ and using the identification with conformal blocks $\mathbb{V}_{ \pm}(\mathfrak{s l}(2), \ell)_{\mid C}$, we get a sheaf of algebras over \bar{M}_{g}.
- The factorization theorem relates $\mathbb{V}_{ \pm}(\mathfrak{s l}(2), \ell)_{\mid C}$ to a conformal block on its normalization.
- Hence as curve degenerates, the section ring degerates to product of the fusion ring for $\mathfrak{s l}(2)$ and which has a very explicit description in terms of the quantum Clebsch-Gordan equations.
- This gives the toric degeneration.

The case $X=M_{C}^{-}(2)$

- If Γ has no separating edges $X_{\Gamma, c}$ has terminal singularities.
- Let $P_{\Gamma, c}$ be the moment polytope, then $L=\mu^{-1}(\overrightarrow{0})$ is monotone, Lagrangian.
- Hence $m_{0}(L)=W_{\Gamma, c}$, when Γ has no separating edges.
- The case of general Γ follows from the TQFT results since periods of $W_{\Gamma, c}$ only depend on parity of c and the genus of Γ.

