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Moduli space

Consider the smooth intersection of two quadrics @1 and Q>
X272 C PS

This is a Fano three fold of Picard number one.
Reinterpretation as moduli space

e C will denote a smooth projective curve of genus g > 2.
o L be a fixed line bundle on C.

o Mc(L) will denote the moduli space of semi-stable rank two

bundles with determinant L.
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Properties

e For any LL of odd degree (respectively even), the moduli
spaces Mc(LL)'s are isomorphic. We drop the LL in the
notation and simply denote M%.

e If C is hyperelliptic, then the moduli space has a more
concrete description (Narasimhan-Ramanan, Newstead
(g = 2), Desale-Ramanan).

Mc = OGrg, (g — 1,28 +2) N OGrg,(g — 1,2g + 2).

e M, is smooth, Fano of dimension 3(g — 1). Moreover
(Drezet-Narasimhan)

Pic(M¥) = Ze.

The canonical class KME = —2[0], i.e. M is of index two.



Properties... continued

e Deformations of M% are controlled by deformations of C.

e The spaces HO(MZ, ©%") are known as conformal blocks
and can be constructed as quotient of representations of
SLo(C((t))). (Beauville-Laszlo, Faltings, Laszlo-Sorger,
Kumar-Narasimhan-Ramananathan)

e As C varies in M, the spaces HO(M%,@W) form a vector
bundle (Tsuchiya-Ueno-Yamada/Wess-Zumino-Witten).
denoted by Vi (sl(2),¢) along with generalization to the
parabolic bundles set-up.



Mirror Symmetry for Fano X and LG-models (Y, w)

B-side A-side

e The bounded derived e Fukaya-Seidel category
category D?(X) and semi FS(Y,w) of a
orthogonal decompositions. Landau-Ginzburg model.

e Matrix factorization category e Fukaya Category Fuk(X),
MF(Y,w) and their quantum cohomology ring
decomposition with respect QH*(X) and decomposition
to the critical values of w. with respect to c¢1(X)xo.

Decompositions: Eigen Values (¢;(M)*o) = Critical Values (w).



Quantum periods X

Let Xo k,m denote the Kontsevich moduli space of stable maps f
from a rational curve with k marked points and deg f*(—Kx) = m.

Definition

The m > 2-th descendent Gromov Witten number

P = /X e ()

where 1) is the Psi class on Xo1,m and evy : Xp1.m — X.

Compute

éx(t) = Z mlp,t™ for pp =1, pp = 0.

m>0



Weak LG models: Y = C4mX

Definition

Let W : (C*)" — C be a Laurent polynomial. A classical period of
W is the following Laurent series.

(t) < ! >n/ : dlog X
Tw(t) = —— X
27'('\/—1 |X1‘:-":‘Xn‘:1 ]_ — tW(X]_,...,Xn)

Quantum=classical

Given X, can we find W such that

~

Gx(t) = 7Tw(t)



Example

o If X =P3 then W=x+y+2z+-L and

Xxyz
t4d

Gx(t) = X d=o (any
e If X blow up of a line in P3, then W:x+y+z+§+yiz.

o If X =P(Op2 ® Op(2)), then W =x+y+z+2 + 1.

Remark

Observe that in all these cases X is a toric variety and the Newton
polytope of W is the Fan polytope of the toric variety.



Finding mirror potentials W

e (Hori-Vafa, Givental) If X is a smooth toric Fano then we can
take W : (C*)4mX 5 C to the Newton polynomial of the
Fan polytope. Similarly W is known for Fano complete
intersection in a toric variety.

o (Coates-Corti-Galkin-Kasprzyk) If X is a smooth Fano three
fold, then quantum periods are known.

e Many other results due to works of
Batryrev-Ciocan-Fontanine-Kim-van-Straten, Bondal-Galkin,
Coates, Przyalkowski, ...



Goal

Find a weak LG mirror W for M- (2) ?

Give an efficient way to compute periods of W.

Compare the critical values and critcal sets to that of

quantum cohomology of M- (2).

Give evidence for natural decomposition of the derived

category of M (2).
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Graph potentials and trinion potentials

a b c
W, = ab —t — 4+ —
ac+bc+ac+ab

b c
1 bc ac ab
W.:i -

abc a b
b [«



Graph Potential

1. Trivalent graph correspond to decompositon of a surface into
pair of pants.

2. Trivalent graphs also correspond to a strata in Wg,,, of
maximally degenerate curves.

Definiton

Let (I, c) be a colored trivalent graph and ¢ : V(I') — {£1},
define

Wr = Z Wv,c(v)'
veV(T)
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Examples: g=2

b
p—@e—a—e—cC @
c
b c
b2 2  a 1 5 c? (abc—i—E—F;—i—%)
( 3+5+?)+(P+ 8+;) 1 bc ac ab
+(—+—+—+—)
abc a b c
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Example g =3

f d
b b
bde*w*a*z
+abc+£+f =
ab  bc

1 ef cf ce

+(cef+ T f)
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Theorem (Belmans-Galkin-M)

Let W € C[xi, ..., xZ;yi ..., yj] be a Laurent polynomial, we
will denote by [W™] the coeffiecient of x{...x2 in the m-th power
of W.

We have the following result about graph potentials.

e The constant term [(Wr c)™] depends only on the genus g of
I and total parity € of the coloring c.
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Theorem on TQFT

Let >, , be an oriented surface of genus g with n boundary
components with the condition that 2g + n > 2. To every pairs of
pants decomposition of ¥, ,, with dual graph (I', n, ¢) the
assignment defines a TQFT:

2, = @ (las (@ ot ) ) € (P(2)°

ecEj: veV

where Ej,; are internal edges of I, a, b are vertices adjacent to an
edge e € Ej,+, and 1, , k are edges incident to a vertex v of I,
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Explicit Formula

Let Bes(z) := >0 #22’" be the Bessel function.

Theorem

e For ' with no half edges (compact surfaces):
(W
Z[ re) ]COHSt = Trace(A8~15°T€), where
m>0

= x""and A= Bes(t(x +y)) - Bes(t(x~

@@

Example: g=2

2n!)?
Z ( n!6) t2n

n>0
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B side: Graph potentials and MZ(2)

Theorem (Belmans-Galkin-M:20)

e The moduli space M (2) (resp M£(2)) has a natural toric
Xr o degeneration associated to a trivalent graph I whose
Newton polynomial is the graph potential Wr ..

Remark: The degeneration (refining Manon:16) uses
conformal blocks.

o IfT has no separating edges, then Xr . has terminal
singularities and hence

e (Kiem-Li:04) M£(2) has terminal singularities for a generic

curve.
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A side: Graph potentials as weak LG models

Theorem: Belmans-Galkin-M

The m-th descendent Gromov-Witten invariant of M (2) is
[(Wl',c)m]const
m!

In particular

for any closed graph (I, ¢) of genus g with odd parity.

~

Gz (2)(t) = T (1)

Remark: Proposal of Eguchi-Hori-Xiong, for constructing mirror
potential of Fano varieties. (Earlier: Abouzaid, Aroux,
Coates-Corti-Galkin, FOOO, Givental, Konstevich, Katzarkov,
Przylkowski, Nishinou-Nohara-Ueda, Orlov, Seidel).
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Conjectural semi-orthogonal decomposition

Conjecture: Belmans-Galkin-M, Narasimhan
Let C be a smooth curve of genus g

D®(M¢ (2)) = (D*(pt), D*(pt), D®(C), D?(C), - -
..., DP?(Sym&~2 C), D® (Sym&2C), D(Symé~1 C)).

Theorem: Belmans-M:19
D°(Mc (r)) = (D®(pt), D®(pt), D®(C), D*(C), B),

where M (r) is the moduli space of rank r bundles with fixed
determinant of degree one.

Remark: Lee-Moon:22 has generalized BM:19 for any coprime

degree.
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Theorem: Munoz

The quantum multiplication xo by ¢;1(M) on quantum
cohomology ring QH*(M¢) has the following eigen-space

decomposition:
g—1

QH*(Mc) = B Hm,

m=1—g

e The eigen-values are
8(1-g).8(2—g)v—1,8(3—g),...,8(g—3),8(g—2)vV—1,8(g—1).
e H,, are isomorphic as vector spaces to H*(Symg_l_‘m| Q).

Remark: This decomposition is equivariant with respect to the
natural Sp(2g) action on both sides.
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BGM-N conjectures and Graph potentials

Theorem: Belmans-Galkin-M

Let I' be the necklace graph with one colored vertex, then the set
of critical values of Wr .

{-8(g—1),—-8V-1(g—2),...,0,...,8V/-1(g — 2),8(g — 1)}

equals the eigen values (Mufioz) of quantum multiplication by
c1(Mc(2)).

Moreover the dimensions of the critical set with absolute critical
value 8(g — 1 — k) is k.
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Recent updates

e Theorem: Bondal-Orlov:95
If g = 2, then D’(M¢(2)) = (D®(pt), D’(C), D"(pt)).

e Theorem: Narasimhan:15, Kuznetsov-Fonarev:18
D*(M¢(2)) = (D”(pt), D®(C),C).

e Theorem: Lee-Narasimhan
If C is not hyperelliptic, then
DE(M(2)) = (D? Sym?(C),C).

e Theorem: Tevelev-Torres
Db(ME(Q)) = <Db(pt), Db(pt)7 T Db (Symg_lc)v -’4>

e Theorem: Xu-Yau
D*(M¢(2)) = ({8" ® D*(Sym’(C))}o<r<a,izg—t: A’) with
some generalizations for principal bundles.
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Outline of the general machinery: Step |

Let X — B be a degeneration of a smooth Fano X such that the
degeneration preserves second Betti numbers and Xj is toric.

e Consider the moment map p : Xo - P ¢ R4mXo and

construct a monotone Lagrangian torus L = i~ *(u) in Xo.

e Using the toric degeneration and symplectic parallel transport
we construct a monotone Lagrangian torus in X
(Nishinou-Nohara-Ueda, Harada-Kaveh).
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cont..

Theorem: Belmans-Galkin-M

The Newton polytope of the Floer potential mg(L) counting
Maslov index two disc in X with boundary in L equals that of the
fan polytope of Xp.

In particular if the fan polytope has no non-vertex lattice points,
then we can compute mg(L)

(Galkin-Mikhalkin, generalizing Nishinou-Nohara-Ueda).

Quantum periods v/s Floer potential
It is known that (Tonkonog, Bondal-Galkin, Mikhalkin) that

GMg(z)(t) can be computed via periods of mg(L).
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Step II: Construct a toric degeneration of M (2)

Let (I, ¢) be a trivalent graph with one (zero) colored vertex of
genus g. The moduli spaces M (2) (M£(2)-even degree
determinant) degenerates to a toric variety Xr .. whose moment

polytope in RIEl is given by:
If c(v) =(-1),

with respect to a lattice L in ZIEl of index 28.
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Steps...

e Consider the section ring @boHO(I\/I%, ©') and using the

identification with conformal blocks V_ (sl(2), (), -, we get a

_ ¢
sheaf of algebras over M.
e The factorization theorem relates Vi(5[(2),€)|c to a

conformal block on its normalization.

e Hence as curve degenerates, the section ring degerates to
product of the fusion ring for s[(2) and which has a very
explicit description in terms of the quantum Clebsch-Gordan
equations.

e This gives the toric degeneration.
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The case X = M (2)

e If [ has no separating edges Xr . has terminal singularities.

e Let Pr . be the moment polytope, then L = ~%(0) is
monotone, Lagrangian.

e Hence mg(L) = Wr ¢, when T has no separating edges.

e The case of general I' follows from the TQFT results since
periods of W . only depend on parity of ¢ and the genus of I'.
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