Graph potentials and mirrors of moduli of rank two bundles on curves.

Swarnava Mukhopadhyay (joint work with Pieter Belmans and Sergey Galkin)

August 4, 2022

Consider the smooth intersection of two quadrics Q_1 and Q_2

$$X_{2,2} \subset \mathbb{P}^5$$

This is a Fano three fold of Picard number one.

Reinterpretation as moduli space

- C will denote a smooth projective curve of genus $g \ge 2$.
- \mathbb{L} be a fixed line bundle on *C*.
- *M_C*(L) will denote the moduli space of semi-stable rank two bundles with determinant L.

Properties

- For any L of odd degree (respectively even), the moduli spaces M_C(L)'s are isomorphic. We drop the L in the notation and simply denote M[±]_C.
- If C is hyperelliptic, then the moduli space has a more concrete description (Narasimhan-Ramanan, Newstead (g = 2), Desale-Ramanan).

$$M_C^- = OGr_{q_1}(g - 1, 2g + 2) \cap OGr_{q_2}(g - 1, 2g + 2).$$

• M_C^- is smooth, Fano of dimension 3(g-1). Moreover (Drezet-Narasimhan)

$$\operatorname{Pic}(M_C^{\pm}) = \mathbb{Z}\Theta.$$

The canonical class $K_{M_C^-} = -2[\Theta]$, i.e. M_C^- is of index two.

Properties... continued

- Deformations of M_C^{\pm} are controlled by deformations of C.
- The spaces H⁰(M[±]_C, Θ^{⊗ℓ}) are known as conformal blocks and can be constructed as quotient of representations of SL₂(C((t))). (Beauville-Laszlo, Faltings, Laszlo-Sorger, Kumar-Narasimhan-Ramananathan)
- As C varies in M_g, the spaces H⁰(M[±]_C, Θ^{⊗ℓ}) form a vector bundle (Tsuchiya-Ueno-Yamada/Wess-Zumino-Witten). denoted by V_±(sl(2), ℓ) along with generalization to the parabolic bundles set-up.

Mirror Symmetry for Fano X and LG-models (Y, w)

B-side

- The bounded derived category D^b(X) and semi orthogonal decompositions.
- Matrix factorization category MF(Y, w) and their decomposition with respect to the critical values of w.

A-side

- Fukaya-Seidel category
 FS(Y, w) of a
 Landau-Ginzburg model.
- Fukaya Category Fuk(X), quantum cohomology ring QH*(X) and decomposition with respect to c₁(X)*₀.

Decompositions: Eigen Values $(c_1(M)\star_0) =$ Critical Values (w).

Quantum periods X

Let $X_{0,k,m}$ denote the Kontsevich moduli space of stable maps f from a rational curve with k marked points and deg $f^*(-K_X) = m$. **Definition**

The $m \ge 2$ -th descendent Gromov Witten number

$$p_m = \int_{X_{0,1,m}} \psi^{m-2} \operatorname{ev}_1^{-1}([pt]),$$

where ψ is the *Psi* class on $X_{0,1,m}$ and $ev_1 : X_{0,1,m} \to X$.

Compute

$$\widehat{G}_X(t):=\sum_{m\geq 0}m!p_mt^m \quad ext{for } p_0=1, \ p_1=0.$$

Weak LG models: $Y = \mathbb{C}^{\dim X}$

Definition

Let $W : (\mathbb{C}^{\times})^n \to \mathbb{C}$ be a Laurent polynomial. A classical period of W is the following Laurent series.

$$\pi_W(t) = \left(\frac{1}{2\pi\sqrt{-1}}\right)^n \int_{|x_1|=\cdots=|x_n|=1} \frac{1}{1 - tW(x_1, \dots, x_n)} \operatorname{dlog} \vec{x}$$

Quantum=classical

Given X, can we find W such that

$$\widehat{G}_X(t) = \pi_W(t)$$

Example

• If
$$X = \mathbb{P}^3$$
, then $W = x + y + z + \frac{1}{xyz}$ and $G_X(t) = \sum_{d=0}^{\infty} \frac{t^{4d}}{(d!)^4}$

• If X blow up of a line in \mathbb{P}^3 , then $W = x + y + z + \frac{z}{x} + \frac{1}{yz}$.

• If
$$X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(2))$$
, then $W = x + y + z + \frac{z^2}{xy} + \frac{1}{z}$.

Remark

Observe that in all these cases X is a toric variety and the Newton polytope of W is the Fan polytope of the toric variety.

Finding mirror potentials W

- (Hori-Vafa, Givental) If X is a smooth toric Fano then we can take W : (C[×])^{dim X} → C to the Newton polynomial of the Fan polytope. Similarly W is known for Fano complete intersection in a toric variety.
- (Coates-Corti-Galkin-Kasprzyk) If X is a smooth Fano three fold, then quantum periods are known.
- Many other results due to works of Batryrev-Ciocan-Fontanine-Kim-van-Straten, Bondal-Galkin, Coates, Przyalkowski,...

- Find a weak LG mirror W for $M_C^-(2)$?
- Give an efficient way to compute periods of W.
- Compare the critical values and critical sets to that of quantum cohomology of $M_C^-(2)$.
- Give evidence for natural decomposition of the derived category of $M_C^-(2)$.

Graph potentials and trinion potentials

$$W_{\bullet} = abc + \frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab}$$

$$W_{\bullet} = \frac{1}{abc} + \frac{bc}{a} + \frac{ac}{b} + \frac{ab}{c}$$

$$W_{\bullet}(a^{\pm}, b^{\pm}, c^{\pm}) = W_{\bullet}(a^{\mp}, b^{\mp}, c^{\mp})$$

- 1. Trivalent graph correspond to decompositon of a surface into pair of pants.
- 2. Trivalent graphs also correspond to a strata in $\overline{M}_{g,n}$ of maximally degenerate curves.

Definiton

Let (Γ, c) be a colored trivalent graph and $c : V(\Gamma) \rightarrow \{\pm 1\}$, define

$$W_{\Gamma,c} := \sum_{v \in V(\Gamma)} W_{v,c(v)}.$$

$$(b^2a + \frac{2}{a} + \frac{a}{b^2}) + (\frac{1}{ac^2} + 2a + \frac{c^2}{a})$$

$$(abc + \frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab}) + (\frac{1}{abc} + \frac{bc}{a} + \frac{ac}{b} + \frac{ab}{c})$$

$$adf + \frac{f}{ad} + \frac{a}{df} + \frac{d}{af} + \frac{d}{af} + \frac{b}{bde} + \frac{b}{bd} + \frac{b}{bde} + \frac{b}{bc} + \frac{b}{ac} + \frac{c}{ab} + \frac{a}{bc} + \frac{c}{ab} + \frac{a}{bc} + (\frac{1}{cef} + \frac{ef}{c} + \frac{cf}{e} + \frac{ce}{f})$$

Let $W \in \mathbb{C}[x_1^{\pm}, \dots, x_e^{\pm}; y_1^{\pm}, \dots, y_{\ell}^{\pm}]$ be a Laurent polynomial, we will denote by $[W^m]$ the coefficient of $x_1^0 \dots x_e^0$ in the *m*-th power of W.

We have the following result about graph potentials.

• The constant term $[(W_{\Gamma,c})^m]$ depends only on the genus g of Γ and total parity ϵ of the coloring c.

Let $\Sigma_{g,n}$ be an oriented surface of genus g with n boundary components with the condition that 2g + n > 2. To every pairs of pants decomposition of $\Sigma_{g,n}$, with dual graph (Γ, n, c) the assignment defines a TQFT:

$$\mathcal{Z}_{\Sigma_{g,n}} := \bigotimes_{e \in E_{int}} \langle , \rangle_{a,b} \bigg(\bigotimes_{v \in V} \exp(tW_{\pm}(x_i, x_j, x_k)) \bigg), \in (\ell^2(\mathbb{Z}))^{\otimes n}$$

where E_{int} are internal edges of Γ , a, b are vertices adjacent to an edge $e \in E_{int}$, and i, j, k are edges incident to a vertex v of Γ .

Explicit Formula

Let
$$Bes(z) := \sum_{m \ge 0} \frac{1}{m!^2} z^{2m}$$
 be the Bessel function.
Theorem

• For Γ with no half edges (compact surfaces):

$$\sum_{m \ge 0} \frac{[(W_{\Gamma,c})^m]_{const}}{m!} t^m = \operatorname{Trace}(A^{g-1}S^{\epsilon+g}), \text{ where }$$

$$S(x^{n}) := x^{-n} \text{ and } A = Bes(t(x+y)) \cdot Bes(t(x^{-1}+y^{-1}))$$

Example: g=2

$$\sum_{n \ge 0} \frac{(2n!)^2}{n!^6} t^{2n}$$

B side: Graph potentials and $M_C^{\pm}(2)$

Theorem (Belmans-Galkin-M:20)

The moduli space M⁻_C(2) (resp M⁺_C(2)) has a natural toric X_{Γ,c} degeneration associated to a trivalent graph Γ whose Newton polynomial is the graph potential W_{Γ,c}.

Remark: The degeneration (refining Manon:16) uses conformal blocks.

- If Γ has no separating edges, then X_{Γ,c} has terminal singularities and hence
- (*Kiem-Li:04*) *M*⁺_{*C*}(2) has terminal singularities for a generic curve.

Theorem: Belmans-Galkin-M

The *m*-th descendent Gromov-Witten invariant of $M_C^-(2)$ is $\frac{[(W_{\Gamma,c})^m]_{const}}{m!}$ for any closed graph (Γ, c) of genus *g* with odd parity. In particular

$$\widehat{G}_{\mathcal{M}_{\mathcal{C}}^{-}(2)}(t) = \pi_{\mathcal{W}_{\Gamma,c}}(t)$$

Remark: Proposal of Eguchi-Hori-Xiong, for constructing mirror potential of Fano varieties. (Earlier: Abouzaid, Aroux, Coates-Corti-Galkin, FOOO, Givental, Konstevich, Katzarkov, Przylkowski, Nishinou-Nohara-Ueda, Orlov, Seidel).

Conjectural semi-orthogonal decomposition

Conjecture: Belmans-Galkin-M, Narasimhan

Let C be a smooth curve of genus g

$$\mathbf{D}^{b}(M_{C}^{-}(2)) = \langle \mathbf{D}^{b}(pt), \mathbf{D}^{b}(pt), \mathbf{D}^{b}(C), \mathbf{D}^{b}(C), \cdots$$
$$\cdots, \mathbf{D}^{b}(\operatorname{Sym}^{g-2} C), \mathbf{D}^{b}(\operatorname{Sym}^{g-2} C), \mathbf{D}^{b}(\operatorname{Sym}^{g-1} C) \rangle.$$

Theorem: Belmans-M:19

$$\mathbf{D}^{b}(M_{C}^{-}(r)) = \langle \mathbf{D}^{b}(pt), \mathbf{D}^{b}(pt), \mathbf{D}^{b}(C), \mathbf{D}^{b}(C), \mathcal{B} \rangle,$$

where $M_C^-(r)$ is the moduli space of rank r bundles with fixed determinant of degree one.

Remark: Lee-Moon:22 has generalized BM:19 for any coprime degree.

Theorem: Muñoz

The quantum multiplication \star_0 by $c_1(M_C^-)$ on quantum cohomology ring $QH^*(M_C)$ has the following eigen-space decomposition:

$$QH^*(M_C^-) = \bigoplus_{m=1-g}^{g-1} H_m,$$

• The eigen-values are

$$8(1-g), 8(2-g)\sqrt{-1}, 8(3-g), \dots, 8(g-3), 8(g-2)\sqrt{-1}, 8(g-1).$$

• H_m are isomorphic as vector spaces to $H^*(\text{Sym}^{g-1-|m|} C)$.

Remark: This decomposition is equivariant with respect to the natural Sp(2g) action on both sides.

Theorem: Belmans-Galkin-M

Let Γ be the necklace graph with one colored vertex, then the set of critical values of $W_{\Gamma,c}$

$$\left\{-8(g-1),-8\sqrt{-1}(g-2),\ldots,0,\ldots,8\sqrt{-1}(g-2),8(g-1)\right\}$$

equals the eigen values (Muñoz) of quantum multiplication by $c_1(M_C^-(2))$.

Moreover the dimensions of the critical set with absolute critical value 8(g - 1 - k) is k.

Recent updates

- Theorem: Bondal-Orlov:95 If g = 2, then $\mathbf{D}^{b}(M_{C}^{-}(2)) = \langle \mathbf{D}^{b}(pt), \mathbf{D}^{b}(C), \mathbf{D}^{b}(pt) \rangle$.
- Theorem: Narasimhan:15, Kuznetsov-Fonarev:18 $\mathbf{D}^{b}(M_{C}^{-}(2)) = \langle \mathbf{D}^{b}(pt), \mathbf{D}^{b}(C), C \rangle.$
- Theorem: Lee-Narasimhan If C is not hyperelliptic, then $\mathbf{D}^{b}(M_{C}^{-}(2)) = \langle \mathbf{D}^{b} \operatorname{Sym}^{2}(C), C' \rangle.$
- Theorem: Tevelev-Torres $\mathbf{D}^{b}(M_{C}^{-}(2)) = \langle \mathbf{D}^{b}(pt), \mathbf{D}^{b}(pt), \cdots, \mathbf{D}^{b}(Sym^{g-1}C), \mathcal{A} \rangle.$
- Theorem: Xu-Yau
 D^b(M⁻_C(2)) = ⟨{Θ^ℓ ⊗ D^b(Symⁱ(C))}_{0≤ℓ<2,i<g-ℓ}, A'⟩ with some generalizations for principal bundles.

Let $\mathcal{X} \to B$ be a degeneration of a smooth Fano X such that the degeneration preserves second Betti numbers and X_0 is toric.

- Consider the moment map μ : X₀ → P ⊂ ℝ^{dim X₀} and construct a monotone Lagrangian torus L = μ⁻¹(u) in X₀.
- Using the toric degeneration and symplectic parallel transport, we construct a monotone Lagrangian torus in X (Nishinou-Nohara-Ueda, Harada-Kaveh).

Theorem: Belmans-Galkin-M

The Newton polytope of the Floer potential $m_0(L)$ counting Maslov index two disc in X with boundary in L equals that of the fan polytope of X_0 .

In particular if the fan polytope has no non-vertex lattice points, then we can compute $m_0(L)$

(Galkin-Mikhalkin, generalizing Nishinou-Nohara-Ueda).

Quantum periods v/s Floer potential

It is known that (Tonkonog, Bondal-Galkin, Mikhalkin) that $G_{M_{C}^{-}(2)}(t)$ can be computed via periods of $m_{0}(L)$.

Let (Γ, c) be a trivalent graph with one (zero) colored vertex of genus g. The moduli spaces $M_C^-(2)$ $(M_C^+(2)$ -even degree determinant) degenerates to a toric variety $X_{\Gamma,c}$. whose moment polytope in $\mathbb{R}^{|E|}$ is given by:

If $c(v)=(-1)^\epsilon$,

- $(-1)^{\epsilon}(x+y+z) \geq -1.$
- $(-1)^{\epsilon}(x-y-z) \geq -1.$
- $(-1)^{\epsilon}(-x-y+z) \geq -1.$
- $(-1)^{\epsilon}(-x+y-z) \geq -1.$

with respect to a lattice L_{Γ} in $\mathbb{Z}^{|E|}$ of index 2^{g} .

- Consider the section ring $\bigoplus_{\ell>0} H^0(M_C^{\pm}, \Theta^{\ell})$ and using the identification with conformal blocks $\mathbb{V}_{\pm}(\mathfrak{sl}(2), \ell)_{|C}$, we get a sheaf of algebras over \overline{M}_g .
- The factorization theorem relates $\mathbb{V}_{\pm}(\mathfrak{sl}(2), \ell)_{|C}$ to a conformal block on its normalization.
- Hence as curve degenerates, the section ring degerates to product of the fusion ring for sl(2) and which has a very explicit description in terms of the quantum Clebsch-Gordan equations.
- This gives the toric degeneration.

- If Γ has no separating edges $X_{\Gamma,c}$ has terminal singularities.
- Let $P_{\Gamma,c}$ be the moment polytope, then $L = \mu^{-1}(\vec{0})$ is monotone, Lagrangian.
- Hence $m_0(L) = W_{\Gamma,c}$, when Γ has no separating edges.
- The case of general Γ follows from the TQFT results since periods of W_{Γ,c} only depend on parity of c and the genus of Γ.