29/2124 The Defect of a cubic 3fold

- joint with Sasha Viktorova
$X=$ cubic 3fold $w /$ isolated sings not a cone over a cubic surface.
Defect: $\sigma(x)=r_{k}(\operatorname{Weil}(x) / \operatorname{Cart}(x))$
* measures failure of \mathbb{Q}-factoriality

Cheltsov: nodal cubic 3 folds are \mathbb{Q}-factorial if \# nodes <4.
If \#nodes $=4$ all nodes may lie on
i weir div, not Cart.
$\#$ nodes $=6$ in general position $\Leftrightarrow x$ being determinental. Hasset-Tschinkes: contain rational Dolgacher normal cubic scroll.

$$
\Rightarrow \sigma(x)>0
$$

* measures failure of Poincare duality:

Steenbrink + Namikawa: X normal, prog 3lold, cool rational sings, $H^{2,0}=0$ then

$$
\sigma(x)=b_{4}(x)-b_{2}(x)
$$

* $\sigma(x)$ connected to existence of reducible lubes of Intermediate Jacobian furation.

$$
V \subset \mathbb{P}^{5} \text { smooth cubic } 4 \text { fold }
$$

$$
\pi_{u}: J_{u} \rightarrow \underset{w^{\prime} \hat{\imath}_{\text {Smooth hi }}}{u} \subset\left(\mathbb{T}^{S}\right)^{v}
$$

$\begin{aligned} & \pi_{u}: J_{u} \rightarrow U \subset\left(\mathbb{P}^{s}\right)^{v} \\ & \begin{array}{c}\text { Donagi } \\ \text { Martian } \\ \\ \\ J\left(X_{t}\right)\end{array} \rightarrow t \quad{ }^{\text {亿 }} \text { Smooth hyperplane sections }\end{aligned}$

- Laza, Saccà, Vorsin: \exists HK compactification

$$
\pi: \tilde{J}_{v} \rightarrow\left(\mathbb{P}^{5}\right)^{v}
$$

V general cubic 4fold: Th has irreducible liber.

- Saccà: all cubic 4 folds - not - $n s t r u c t i v e$, and π may have reducible fibers.
Brosnan: if $\exists \mu \cap V=x$ with $o(x)>0$, then liber over H is reducible \# ir components $\geqslant \sigma(x)+1$.

3 Main Goals:
(1) Understand which cubic 3folds $\sigma(x)>0$.
(2) Identify geneators of $\operatorname{Weil}(x) / \operatorname{Cart}(x)$.
\rightarrow in turn: provide geometric criteria for when a cubic 4 fold V has a hyperplane sect with positive defect.
(3) Compute cohomology - Mixed Madge Str on

Sings of Cubic 3 fold.

* all possible combination isolated sings are classified by Viktorova
Thm(Viktarova): 204 possible combinations.
- ADE sings occurs \Leftrightarrow union \& Dynkin diagram is $10 A_{1}, 5 A_{2}$ or an induced subgraph of:
remove a, b, c.

$$
3 D_{4}
$$

 3 copies of $\widetilde{E}_{\mathrm{c}}$

- worse than ADE do appear.
- maximal $A D E: I O A_{1}, A_{11}$,

$$
\begin{aligned}
& D_{8}+A_{3}, E_{7}+A_{2}+A_{1}, \\
& E_{8}+A_{2}, \ldots .
\end{aligned}
$$

Tools to compute Defect.
(1) Projection method: $q=[0: 0: \ldots: 1] \in \operatorname{Sing}(x)$

$$
x: \quad x_{4} f_{2}\left(x_{0}, \ldots, x_{3}\right)+f_{3}\left(x_{0}, \ldots, x_{3}\right)=0
$$

Cq parametrises lines in X that pass through q.
(2) $B l_{q} X \cong B L_{c_{q}} \mathbb{T}^{3}$

Slogan: C_{q} governs the geometry X.
Sings of x are mirrored by $C q$
Wall : - If C_{q} has sing p t of type T away $\operatorname{Sing}(Q)$ then X has sing of type T on line $\langle p, q\rangle$

- If C_{q} has sing of type T at $p \in C_{q} \cap \operatorname{Sing}(Q)$ then $B I_{q} X$ has sing p of type T on $\phi_{E}^{-1}(p)$.

The 1 (M - Viktorova): $X<\mathbb{P}^{4}$ cubic sol sings (notions) Let $R=\#$ ir components of C_{q}
Then

$$
\sigma(x)=\left\{\begin{array}{l}
k-1 \text { when } Q \neq P_{1} \cup P_{2} \\
k-2 \text { when } Q=P_{1} \cup P_{2}
\end{array}\right.
$$

Idea of proof: two discrimenent squares.
$\operatorname{Cor}(M \cdot V i k t o r a v a): \quad \sigma(x) \leq 6$

- $\sigma(x)=6 \Leftrightarrow x$ cone over cubicsulace.
- $\sigma(x)=5 \Leftrightarrow x$ is Segre cubic (IOA.).
- obtain classification of which cubic 3folds are \mathbb{Q}-factorial.

What are generators of $\operatorname{Weil}(x) / \operatorname{Cart}(x)$?
Thy $2(\mu$-Viktorova): X cubic isol. sings.
Then $\sigma(x)>0 \Leftrightarrow x$ contains a plane or rational normal cubic scroll.

Idea: $\sigma(x)>0 \Leftrightarrow C_{q}$ reducible.

Possible Components
(1) line \Rightarrow plane immediately.
(2) plane conic \Rightarrow plane
(3) $C_{q}=$ union of twisted cubics lie on $Q \cap S$.

$$
\begin{aligned}
X: & \operatorname{det} M=0 \\
\phi: & X \cdots \mathbb{P}^{2} \\
& p \mapsto[a, b, c) \text { wee } M\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 .
\end{aligned}
$$

$\phi^{-1}(l)$ cubic scroll contained in X.

* $V \subset \mathbb{P}^{5}$ cubic 4fold, contains a plave ar cubicscoll, $\bar{J}_{V} \rightarrow\left(\mathbb{P}^{5}\right)^{V} \quad \exists$ reducible liber \leftrightarrow cubic 3 folds $\omega / \sigma(x)>0$.
Q : $V \subset \mathbb{P}^{5}$ cubic 4 fold assure that $\sigma(x)=0$ for every $X \cap H$?
Int Jacobians for singular X
Munfords Prim description: $L \subset X$ geneal. avoid sing pts.

$$
\begin{aligned}
& B l_{l} X \\
& \mathbb{P}^{2} \supset D_{l}<-1 \widetilde{D}_{l}
\end{aligned}
$$

smooth case: \widetilde{D}_{l} irreducible étale double cover quintic

$$
J(x) \cong \operatorname{Prgm}_{n}\left(\tilde{D}_{l}, D_{l}\right)
$$

$$
\tau \circlearrowright J\left(\tilde{D}_{l}\right)
$$

$$
\text { Fix }(\tau-i d)_{0} \text {. }
$$

Casalaina-Martin, Laze: defined very good lire
X sing, $l \subset X$ is very good
$\Rightarrow \tilde{D}_{l} \rightarrow D_{C}$ is étale, irreducible curves sings of $D_{e} \leftrightarrow$ Sings of x
Loza-Saccà Voisin: prove x with $\mu(x) \leqslant 5$, then a geneal line is a very good

$$
\left(\begin{array}{c}
\text { line } \\
\Rightarrow \\
\bar{J}(x)
\end{array}\right.
$$

$F(x)$ irreducible.
The 3 (M-Viktorora): X cubic 3fold. then \exists very good line $\Leftrightarrow \sigma(x)=0$ $\Leftrightarrow F(x)$ irreducible
$A_{10}, \sigma(x)=0$.
(1 said A_{11}, but meant $\left.A_{10}\right)$.
Cohomology of X.
Rough The 4 (M-Vik): Hodge numbers of MHS on $H^{3}(x)$ ore determined by (global) $\sigma(x)$ savant t two local invariants sings of x.

$$
\cdot(Y, E) \rightarrow(x, q) \quad \underset{E \text { SAC }}{\log r e s o l} Y \backslash E \cong x \backslash q .
$$

- $b^{p, q}:=\operatorname{dim} H^{q}\left(y, \Omega_{y}^{p}(\log E)(-E) \quad p \geqslant 0\right.$
\Rightarrow for cubic, only non zero $b^{\prime, 1}$.
- Link ivainant $l^{1 / 1}$

$$
\mu=2 b^{1,1}+l^{1,1}
$$

The: $\quad \underline{h}^{p, q}=\operatorname{dim} G r_{F}^{p} H^{p+q}$
For cubic 3 fold $\quad \underline{n}^{1,2}=5-\sum b^{1,1}$

$$
\underline{h}^{2,1}=5-(ん-\sigma)-B
$$

$H^{3}(X)$ Hodge diamond. weight 4

$$
\begin{gathered}
\text { weight } 35-(L-\sigma)-B \quad 5-(L-\sigma)-B \\
L-\sigma
\end{gathered}
$$

X cubic $D_{4}+2 A_{1}$ sings.

$$
q=D_{4} p t .
$$

$Q=P_{1} \cup P_{2}$.
$C_{q}=C_{1} \cup C_{2}$ place aubics.
$2 A_{1}$ sings : C_{i} nodal cubics. $\quad \sigma(x)=0$.

- C_{1} smooth uric, $C_{2}=$ line U conic

$$
\sigma(x)=1 .
$$

