Counting Carves in \mathbb{P}^{r}
TheA. $\quad\left(C, p_{1}, \ldots, p_{n}\right) \in \mu_{g, n}$ general
$\mathbb{P}^{r} \ni x_{1}, \ldots, x_{n}$ geneal pts
The number of degree d maps $f: C \rightarrow \mathbb{P}^{r}$
that satisfy $f\left(p_{i}\right)=x_{i}$ is

$$
\int_{\operatorname{Gr}(r+1, d+1)} \sigma_{1^{r}}^{g} \cdot\left(\sum_{\lambda c(1-r-2)^{r}} \sigma_{\lambda} \sigma_{\bar{\lambda}}\right)_{\lambda_{0} \leq n-r-1}
$$

Assure $n=\frac{r+1}{r} d-g+1$.

TAm

$$
\begin{aligned}
& \frac{m B}{} \quad\left(c_{1} p_{1}, \ldots, p_{n}\right) \in M_{g n} \text { geneal } \\
& \mathbb{P}^{2} \ni x_{1}, \ldots, x_{n_{0}} \text { geneal pts } \\
& \mathbb{P}^{2} \supset L_{n_{0}+1}, \ldots, L_{n} \text { general lines. }
\end{aligned}
$$

πn, the number of $f: C \rightarrow \mathbb{R}^{2} \Lambda$ with

$$
\begin{aligned}
& f\left(p_{i}\right)=x_{i} \quad i \leq n_{0} \\
& f\left(p_{i}\right) \in L_{i} \quad i>n_{0} \\
& \int_{\operatorname{Gr}(3, d+1)}^{\sigma_{1}^{g}} \cdot \sum_{|\lambda|=n+1_{0}-8}
\end{aligned}
$$

Reformulation

$$
\tau: \quad \mu_{\operatorname{gin}}\left(\mathbb{P}^{r}, d\right) \rightarrow M_{\operatorname{gin}} \times\left(\mathbb{P}^{r}\right)^{n}
$$

The A asks for the degree of τ, assuming the appropriate transuessality. [Brill Wether $T_{\mathrm{m}} \Rightarrow \tau$ is generically étale culler expected relative dim $=0]$

Could ask instead for $\operatorname{Vdeg}(\bar{\tau})$.
Problem: $\bar{\mu}_{\text {gm }}\left(\mathbb{P}^{r}, d\right)$ offer contains [doninotiy]] components of dimension tor loge.

Ir geneal, $v \operatorname{deg}(\bar{\tau}) \neq \operatorname{dy}(\tau)$.
e.g. $\quad \begin{aligned} & \text { assume } \\ & d \geqslant n .\end{aligned}$

\in geneal fiber of $\bar{\tau}: \overline{M_{9, ~}}\left(\mathbb{P}^{\sim} d\right)$

$$
\rightarrow \bar{M}_{\sin } \times\left(P^{n}\right)^{n}
$$

but not in $M_{g . n}\left(\mathbb{P}_{i}^{r} d\right)$.
This conarautes to $v \operatorname{deg}(\bar{\tau})$, hat not dey (τ).

Histry
(1) 19th cantory: Castelnow.
$\operatorname{deg}(\tau)$ when $n=r+2$ ($1, d$ is smanl as possible.).

$$
\left\{\begin{array}{l}
\text { Mass } \leftrightarrow \mathbb{P}^{r} \\
w / r \neq 2 \text { nideac } \\
\text { Corditions }
\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}
\text { maps }\left(\rightarrow \mathbb{P}^{r}\right\} \\
\end{array}\right\}
$$

"linear seies if minimal depree".

$$
\operatorname{deg}(\tau)=\int_{\operatorname{Gr}_{r}(r+1, d+1)} \sigma_{1^{r}}^{g}=\begin{gathered}
\text { gerealied } \\
\text { Gatdon } H .
\end{gathered}
$$

(2) $\operatorname{fran} 1990$,

Thm

$$
v \operatorname{deg}(\bar{\tau})=(r+1)^{g}
$$

Bertan-Daskalopoulos wentworth (96).
$\left.\begin{array}{ll}\text { Sieber-Tian } & (97) \\ \text { Marion-Oprea } & 107)\end{array}\right\}$
Vafa-Intilligator formula: detemines all virthal counts of (Pondneiparde)

Buch - Pandharipase
(21) Sclunbert meiderce reduce calculation to calculation in $Q H^{*}\left(\mathbb{P}^{r}\right)$.
(3) sine 2020 .

Tun (Tevelar)

$$
r=1, \quad d=g+1, n=g+3 \rightarrow \operatorname{deg}(\tau)=2^{2}
$$

πh_{m} (Cela-Pandhripade- Schmitt)
When $r=1, d, a$ abdaray:

$$
\operatorname{deg}(\tau)=2^{g}-\frac{\text { sonething ebe }}{\text { g }}
$$

vanistes when $d x g+1$.

$$
\operatorname{Thm}_{\text {m }}\left(\text { Farkes-L. } \int_{\operatorname{Gr}(2,5+1)} \sigma_{i}^{g} \cdot \sum \sigma_{i} \sigma_{j}=2^{g}-\right.\text { sondthing }
$$

(a) wher $r=1$, $\operatorname{deg}(\tau)=$ formula for Thn A.
(b) When r is abitron and divigtr,

$$
\operatorname{deg}(\tau)=(r+1)^{g} .
$$

Ideas in proof
(i) Degeneration to gems 0 .

f rantiol at the pts q_{1}, \ldots, q_{g}.
$\left[\begin{array}{l}E) \text { The hyperplane of sections defining } f \text { that } \\ \text { vanish at } q_{j} \text { actually ravisher to order } 2 .\end{array}\right]$
\Leftrightarrow Schubert cedition of class σ_{j} on

$$
G_{r}\left(r+1, H^{\circ}\left(\mathbb{P}^{\prime}, \theta(d)\right)\right)
$$

$$
\cdots \sigma_{r}^{g}
$$

Needed Ingredients
(1) Limit linear Series (Eserb-d-Harn3).
(2) Space of Complete Glineation avoids Contributions for "maps with ballpoints" by blowing
up loin of degenerate mass (mans with imogene contained in a unpeplane.).

Redial to the fillawns
problem:

$$
\left\{\begin{array}{c}
\left\{\begin{array}{l}
f: \mathbb{P}^{\prime} \rightarrow \mathbb{P}^{r} \text { dey } d \\
\text { with } f\left(p_{i}\right)=x_{i}
\end{array}\right\} \leftarrow\left\{\begin{array}{l}
\text { space of } \\
\text { complete } \\
\text { cullinetions }
\end{array}\right\} \\
\vdots \\
\vdots \\
\operatorname{Gr}\left(r+1, H^{e}(\theta(d))\right) .
\end{array}\right.
$$

What is the Class of the closure of the ing.

$$
Y_{r, n, d} \subset \operatorname{Gr}(r+1, d+1) ?
$$

Quick wan to finin
(1) reduce to the can $d=n-1$.
(2) $Y_{r, n, n-1} \subset \operatorname{Gr}(\beta 1, d t 1)$ is a geienc

Toobt closue. Gr(rth, $\left.c^{n}\right)$.

$$
\left(\mathbb{U}^{\alpha}\right)^{n}
$$

Classes we understood:
80, - Klyackko
105 - Andersea- Tymiczko (Fl(n))
'/2 - Bejet-Fivic

$$
\rightarrow \sum_{\lambda c(n-r-2)} \sigma_{\lambda} \sigma_{\bar{\lambda}}=\left[y_{r, n, n-1)}\right]
$$

(2) class of $Y_{r, n, d}$ by dejerection of the points $x_{i} \in \mathbb{P}^{r}$. [recover orbit clown formulas].

$$
f: \mathbb{p}^{\prime} \rightarrow \mathbb{p}^{\top} \quad f\left(p_{i}\right)=x_{i}
$$

Idea: Move the paints $x_{1}, x_{2} \ldots$ ore b) are onto a hyperplane mi \mathbb{P}^{r}, study degenestioi of f.

- the limit of the linear sees cerderlyng f still contains a secant vanishing aby P1t..tp. "Secancy condition".

Repeat: $X_{1}, \ldots, x_{\alpha+1}$ into codim2 sulspace, iferate.
in the end
(a) resed sequace of $B \rho^{3}$ conditions σ_{λ}
(b) ressed sequace of secancm Cerditions

$$
\sigma_{\lambda}
$$

