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We work over C.

Definition

A normal projective variety X is called

Q-Fano if −KX is ample;

weak Q-Fano if −KX is nef and big.

According to the Minimal Model Program, (weak) Q-Fano varieties form
a fundamental class in birational geometry.

Examples of smooth Fano varieties

Pn;

smooth hypersurfaces in Pn of degree ≤ n;

In dimension 1, P1.

In dimension 2, P1 × P1 or blowing up P2 at ≤ 8 general points.

In dimension 3, exactly 105 deformation families (Iskovskikh,
Mori–Mukai)
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In general it is every hard to classify all Q-Fano varieties (in higher
dimensions or with worse singularities).
In this talk we mainly consider (weak) Q-Fano 3-folds with
terminal/canonical singularities.

Definition

Let X be a normal variety such that KX is Q-Cartier.
Let f : Y → X be a resolution. Write KY = f ∗KX +

∑
i aiEi .

X is terminal if ai > 0 for all i .

X is canonical if ai ≥ 0 for all i .

In dimension 2, terminal⇐⇒ smooth; canonical⇐⇒ Du Val.

Introduced by Reid, appearing naturally in MMP.

Terminal singularities in dimension 3 are classified by Mori.
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Theorem (Kawamata, Kollár–Miyaoka–Mori–Takagi, Birkar)

Fix d ∈ Z>0. The set of all canonical weak Q-Fano varieties of dimension
d is a bounded family (i.e., there are only finitely many deformation
classes).

Goal

Study explicit boundedness of invariants;

Classify extremal cases.

We are mainly interested in the following invariants:

anti-canonical volume (−KX )3.

pluri-anti-canonical systems | −mKX |;
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Question

Let X be a canonical weak Q-Fano 3-fold. What is the lower/upper
bound of (−KX )3?

For the lower bound:

Theorem (Chen–Chen 08)

Let X be a canonical weak Q-Fano 3-fold. Then (−KX )3 ≥ 1
330

(optimal). Moreover, if (−KX )3 = 1
330 , then X has the same Hilbert

series (same h0(X ,−mKX )) as

X66 ⊂ P(1, 5, 6, 22, 33).
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Question

How to characterize the extremal case when (−KX )3 = 1
330? Is it always

a Q-Gorenstein deformation of X66?

We get a partial answer to this question in a smaller category. Note that
a general X66 is a Q-factorial terminal Q-Fano 3-fold with ρ(X ) = 1.

Theorem (J. 21 + J. 22 (new result in this week))

Let X be a Q-factorial terminal Q-Fano 3-fold with ρ(X ) = 1 and
(−KX )3 = 1

330 . Then X is a weighted hypersurface of degree 66 in
P(1, 5, 6, 22, 33).

In fact, we can get the same result for 12 weighted hypersurfaces of the
form X6d ⊂ P(1, a, b, 2d , 3d) in Iano-Fletcher’s list.
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Theorem (J. 22)

Let X be a Q-factorial terminal Q-Fano 3-fold with ρ(X ) = 1. If X has
the same Hilbert series as some X6d ⊂ P(1, a, b, 2d , 3d) in Iano-Fletcher’s
list, then X itself is a weighted hypersurface of the same type.

Step 1 take general fm ∈ H0(X ,−mKX ) for m = 1, a, b, 2d , 3d , define

Φ : X 99K P(1, a, b, 2d , 3d);

P 7→ [f1(P) : fa(P) : fb(P) : f2d(P) : f3d(P)]

Step 2 Show that Φ defines a birational map onto its image Y , and Y is a
weighted hypersurface of degree 6d ; (Hint: by results of [Chen–J.
16], | − 2dKX | defines a generically finite map of degree 2, and
| − 3dKX | defines a birational map)

Step 3 Show that X ' Y by comparing Hilbert series.
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For the upper bound:

(−KX )3 ≤ 63 · (24!)2 if X is a terminal weak Q-Fano 3-fold whose
anti-canonical map is small [KMMT 00]; (Bend and break)

(−KX )3 ≤ 64 if X is a Gorenstein terminal Q-Fano 3-fold, “ = ” iff
X ' P3 [Namikawa 97]; (deformation)

(−KX )3 ≤ 72 if X is a Gorenstein canonical Q-Fano 3-fold, “ = ” iff
X ' P(1, 1, 1, 3) or P(1, 1, 4, 6) [Prokhorov 05]; (MMP)

(−KX )3 ≤ 125
2 if X is a non-Gorenstein Q-factorial terminal Q-Fano

3-fold with ρ(X ) = 1, “ = ” iff X ' P(1, 1, 1, 2) [Prokhorov 07];
(MMP, Sarkisov links, Riemman–Roch)

(−KX )3 ≤ 72 if X is a Q-factorial terminal weak Q-Fano 3-fold with
ρ(X ) = 2 except in one case (≤ 81) [Lai 21]. (MMP, Sarkisov links)

In general, it is expected that for a canonical weak Q-Fano 3-fold X ,
(−KX )3 ≤ 72, but even an explicit bound is not yet established.
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Theorem (J.–Zou 21)

Let X be a canonical weak Q-Fano 3-fold. Then (−KX )3 ≤ 324.

Corollary

Let X be a canonical weak Q-Fano 3-fold. Then h0(X ,−KX ) ≤ 164.

In my thesis, I gave a general strategy on bounding anti-canonical
volumes of Q-Fano varieties with prescribed singularities. For
example, I showed that for a weak Q-Fano 3-fold with ε-lc
singularities, there exists a number M(ε) such that (−KX )3 ≤ M(ε).
(canonical=1-lc).

The problem is to make the above strategy as explicit as possible.

In fact, our method gives an explicit bound for M(ε).
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The reduction step:

X ′

��

MMP // Y

��

π

��
X T

MMP // S

Proposition (Reduction to a birational model)

Let X be a canonical weak Q-Fano 3-fold. Then X is birational to a
normal projective 3-fold Y satisfying the following:

Y is Q-factorial terminal;

(−KX )3 ≤ Vol(Y ,−KY ) = limm→∞
h0(Y ,−mKY )

m3/6 ;

| − nKY | is movable for sufficiently large and divisible n;

for a general member M ∈ | − nKY |, (Y , 1nM) is canonical;

there exists a morphism π : Y → S with connected fibers where F is
a general fiber of π, such that one of the following conditions holds:

S is a point and Y is a Q-Fano 3-fold with ρ(Y ) = 1;
S = P1 and F is a smooth weak del Pezzo surface;
S is a del Pezzo surface with Du Val singularities and ρ(S) = 1, and
F ' P1.
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X ′

��

MMP // Y

��

π

��
X T

MMP // S

Proposition

If dim S = 0, then Vol(Y ,−KY ) ≤ 64 [Prokhorov 07];

If dim S = 1, then Vol(Y ,−KY ) ≤ 324;

If dim S = 2, then Vol(Y ,−KY ) ≤ 312.

Idea of the proof when dimS = 1:

Suppose Vol(Y ,−KY ) >> 0, then we can use −KY to construct
singularities on F (connectedness lemma);

Bound singularities of F (log canonical thresholds; α-invariants).
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Proof of the case dim S = 1:
Step 1. Assume to the contrary that Vol(Y ,−KY ) > 36K 2

F , then we can
find a rational number s such that

Vol(Y ,−KY ) > 3sK 2
F > 36K 2

F .

Then

Vol(Y ,−KY − sF ) ≥ Vol(Y ,−KY )− 3sVol(F ,−KF ) > 0.

Hence there exists an effective Q-divisor D ∼Q −KY − sF on Y .
Step 2. Recall that (Y , 1nM) is canonical, consider(

Y ,
(

1− 2

s

)1

n
M +

2

s
D + F1 + F2

)
where F1,F2 are general fibers of π, then the connectedness lemma
shows that the nonklt locus of this pair is connected.
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. Restricting to a general fiber F , we have

(F , 1nM|F ) is canonical;

(F , (1− 2
s ) 1

nM|F + 2
sD|F ) is not klt;

F is a weak del Pezzo surface;
1
nM|F ∼Q D|F ∼Q −KF .

This is an lct-type problem.

Theorem (J.-Zou 21)

Under the above setting, 2
s ≥

1
6 .

This contradicts
Vol(Y ,−KY ) > 3sK 2

F > 36K 2
F .

So Vol(Y ,−KY ) ≤ 36K 2
F ≤ 324.
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Question

Let X be a canonical weak Q-Fano 3-fold.

When h0(X ,−mKX ) > 0?

When h0(X ,−mKX ) ≥ 2?

When does | −mKX | define a birational map?

Theorem (Chen–Chen 08)

Let X be a canonical weak Q-Fano 3-fold.

h0(X ,−mKX ) > 0 for any m ≥ 6;

h0(X ,−8KX ) ≥ 2 (optimal).

So far there is no example with h0(X ,−2KX ) = 0;

X24,30 ⊂ P(1, 8, 9, 10, 12, 15), h0(X ,−7KX ) = 1.
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Theorem ( [Chen–J. 16 & 21])

Let X be a canonical weak Q-Fano 3-fold.

| −mKX | is birational for any m ≥ 97;

| −mKX | is birational for any m ≥ 39 if X is a Q-factorial terminal
Q-Fano 3-fold with ρ(X ) = 1.

X is birational to a terminal Q-Fano 3-fold Y such that | −mKY | is
birational for any m ≥ 52.

X66 ⊂ P(1, 5, 6, 22, 33), | − 33KX | is birational but | − 32KX | is not.

Theorem ( [J.–Zou])

Let X be a canonical weak Q-Fano 3-fold. Then | −mKX | is birational
for any m ≥ 59.

The main ingredient is to tell when | −mKX | is not composed with a
pencil.
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Theorem ([Chen–J. 16])

Let X be a canonical weak Q-Fano 3-fold. If h0(X ,−m0KX ) ≥ 2 and
| −m1KX | is not a pencil, then | −mKX | is birational m ≥ 3(m0 + m1).

Theorem ([Chen–J. 16])

Let X be a canonical weak Q-Fano 3-fold. If | −mKX | is pencil, then
h0(−mKX ) ≤ rX (−KX )3m + 1.

We can use Riemann–Roch to estimate h0(−mKX ) to find m breaking
this inequality, but rX (−KX )3 could be very large.

Theorem ([J.–Zou 22])

Let X be a canonical weak Q-Fano 3-fold. If | −mKX | is pencil, then
h0(−mKX ) ≤ 12m + 1.

X

  

Woo

��

// Y

��
P1 S
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Thank you for your attention!
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