Explicit boundedness of canonical Fano 3-folds

Chen Jiang

Shanghai Center for Mathematical Sciences Fudan University

joint works with Yu Zou

July 8, 2022

We work over \mathbb{C} .

Definition

A normal projective variety X is called

- **Q-Fano** if $-K_X$ is ample;
- weak \mathbb{Q} -Fano if $-K_X$ is nef and big.

According to the Minimal Model Program, (weak) $\mathbb{Q}\text{-}\mathsf{Fano}$ varieties form a fundamental class in birational geometry.

Examples of smooth Fano varieties

- \mathbb{P}^n ;
- smooth hypersurfaces in \mathbb{P}^n of degree $\leq n$;
- In dimension 1, \mathbb{P}^1 .
- In dimension 2, $\mathbb{P}^1 \times \mathbb{P}^1$ or blowing up \mathbb{P}^2 at ≤ 8 general points.

< ∃ >

We work over \mathbb{C} .

Definition

A normal projective variety X is called

- **Q-Fano** if $-K_X$ is ample;
- weak \mathbb{Q} -Fano if $-K_X$ is nef and big.

According to the Minimal Model Program, (weak) $\mathbb{Q}\text{-}\mathsf{Fano}$ varieties form a fundamental class in birational geometry.

Examples of smooth Fano varieties

- *Pⁿ*;
- smooth hypersurfaces in \mathbb{P}^n of degree $\leq n$;
- In dimension 1, \mathbb{P}^1 .
- In dimension 2, $\mathbb{P}^1\times\mathbb{P}^1$ or blowing up \mathbb{P}^2 at ≤ 8 general points.
- In dimension 3, exactly 105 deformation families (Iskovskikh, Mori–Mukai)

→ ∃ > ∃

In general it is every hard to classify all \mathbb{Q} -Fano varieties (in higher dimensions or with worse singularities). In this talk we mainly consider (weak) \mathbb{Q} -Fano 3-folds with terminal/canonical singularities.

Definition

Let X be a normal variety such that K_X is Q-Cartier. Let $f: Y \to X$ be a resolution. Write $K_Y = f^*K_X + \sum_i a_i E_i$.

- X is **terminal** if $a_i > 0$ for all *i*.
- X is **canonical** if $a_i \ge 0$ for all *i*.
- In dimension 2, terminal \iff smooth; canonical \iff Du Val.
- Introduced by Reid, appearing naturally in MMP.
- Terminal singularities in dimension 3 are classified by Mori.

Theorem (Kawamata, Kollár–Miyaoka–Mori–Takagi, Birkar)

Fix $d \in \mathbb{Z}_{>0}$. The set of all canonical weak \mathbb{Q} -Fano varieties of dimension d is a bounded family (i.e., there are only finitely many deformation classes).

Goal

- Study explicit boundedness of invariants;
- Classify extremal cases.

We are mainly interested in the following invariants:

- anti-canonical volume $(-K_X)^3$.
- pluri-anti-canonical systems $|-mK_X|$;

Question

Let X be a canonical weak \mathbb{Q} -Fano 3-fold. What is the lower/upper bound of $(-K_X)^3$?

For the lower bound:

Theorem (Chen–Chen 08)

Let X be a canonical weak \mathbb{Q} -Fano 3-fold. Then $(-K_X)^3 \ge \frac{1}{330}$ (optimal). Moreover, if $(-K_X)^3 = \frac{1}{330}$, then X has the same Hilbert series (same $h^0(X, -mK_X)$) as

$$X_{66} \subset \mathbb{P}(1, 5, 6, 22, 33).$$

Question

How to characterize the extremal case when $(-K_X)^3 = \frac{1}{330}$? Is it always a \mathbb{Q} -Gorenstein deformation of X_{66} ?

We get a partial answer to this question in a smaller category. Note that a general X_{66} is a Q-factorial terminal Q-Fano 3-fold with $\rho(X) = 1$.

Theorem (J. 21 + J. 22 (new result in this week))

Let X be a Q-factorial terminal Q-Fano 3-fold with $\rho(X) = 1$ and $(-K_X)^3 = \frac{1}{330}$. Then X is a weighted hypersurface of degree 66 in $\mathbb{P}(1, 5, 6, 22, 33)$.

In fact, we can get the same result for 12 weighted hypersurfaces of the form $X_{6d} \subset \mathbb{P}(1, a, b, 2d, 3d)$ in Iano-Fletcher's list.

Theorem (J. 22)

Let X be a \mathbb{Q} -factorial terminal \mathbb{Q} -Fano 3-fold with $\rho(X) = 1$. If X has the same Hilbert series as some $X_{6d} \subset \mathbb{P}(1, a, b, 2d, 3d)$ in lano-Fletcher's list, then X itself is a weighted hypersurface of the same type.

Step 1 take general $f_m \in H^0(X, -mK_X)$ for m = 1, a, b, 2d, 3d, define

$$\Phi: X \longrightarrow \mathbb{P}(1, a, b, 2d, 3d);$$
$$P \mapsto [f_1(P) : f_a(P) : f_b(P) : f_{2d}(P) : f_{3d}(P)]$$

- Step 2 Show that Φ defines a birational map onto its image Y, and Y is a weighted hypersurface of degree 6*d*; (Hint: by results of [Chen–J. 16], $|-2dK_X|$ defines a generically finite map of degree 2, and $|-3dK_X|$ defines a birational map)
- Step 3 Show that $X \simeq Y$ by comparing Hilbert series.

For the upper bound:

- (-K_X)³ ≤ 6³ · (24!)² if X is a terminal weak Q-Fano 3-fold whose anti-canonical map is small [KMMT 00]; (Bend and break)
- $(-K_X)^3 \leq 64$ if X is a Gorenstein terminal Q-Fano 3-fold, "=" iff $X \simeq \mathbb{P}^3$ [Namikawa 97]; (deformation)
- $(-K_X)^3 \leq 72$ if X is a Gorenstein canonical Q-Fano 3-fold, "=" iff $X \simeq \mathbb{P}(1, 1, 1, 3)$ or $\mathbb{P}(1, 1, 4, 6)$ [Prokhorov 05]; (MMP)
- $(-K_X)^3 \leq \frac{125}{2}$ if X is a non-Gorenstein \mathbb{Q} -factorial terminal \mathbb{Q} -Fano 3-fold with $\rho(X) = 1$, " = " iff $X \simeq \mathbb{P}(1, 1, 1, 2)$ [Prokhorov 07]; (MMP, Sarkisov links, Riemman–Roch)
- $(-K_X)^3 \leq 72$ if X is a Q-factorial terminal weak Q-Fano 3-fold with $\rho(X) = 2$ except in one case (≤ 81) [Lai 21]. (MMP, Sarkisov links)

In general, it is expected that for a canonical weak \mathbb{Q} -Fano 3-fold X, $(-\kappa_X)^3 \leq 72$, but even an explicit bound is not yet established.

Theorem (J.-Zou 21)

Let X be a canonical weak \mathbb{Q} -Fano 3-fold. Then $(-K_X)^3 \leq 324$.

Corollary

Let X be a canonical weak \mathbb{Q} -Fano 3-fold. Then $h^0(X, -K_X) \leq 164$.

- In my thesis, I gave a general strategy on bounding anti-canonical volumes of Q-Fano varieties with prescribed singularities. For example, I showed that for a weak Q-Fano 3-fold with ε-lc singularities, there exists a number M(ε) such that (-K_X)³ ≤ M(ε). (canonical=1-lc).
- The problem is to make the above strategy as explicit as possible.
- In fact, our method gives an explicit bound for $M(\epsilon)$.

向下 イヨト イヨト ニヨ

The reduction step:

$$\begin{array}{ccc} X' & \stackrel{\text{MMP}}{\longrightarrow} Y \\ \downarrow & & \downarrow & \\ \chi & & T & \stackrel{\text{MMP}}{\longrightarrow} S \end{array}$$

Proposition (Reduction to a birational model)

Let X be a canonical weak \mathbb{Q} -Fano 3-fold. Then X is birational to a normal projective 3-fold Y satisfying the following:

• *Y* is *Q*-factorial terminal;

•
$$(-K_X)^3 \leq \operatorname{Vol}(Y, -K_Y) = \lim_{m \to \infty} \frac{h^0(Y, -mK_Y)}{m^3/6};$$

- $|-nK_Y|$ is movable for sufficiently large and divisible n;
- for a general member $M \in |-nK_Y|$, $(Y, \frac{1}{n}M)$ is canonical;
- there exists a morphism $\pi : Y \to S$ with connected fibers where F is a general fiber of π , such that one of the following conditions holds:
 - S is a point and Y is a \mathbb{Q} -Fano 3-fold with $\rho(Y) = 1$;
 - $S = \mathbb{P}^1$ and F is a smooth weak del Pezzo surface;
 - S is a del Pezzo surface with Du Val singularities and $\rho(S) = 1$, and $F \simeq \mathbb{P}^1$.

Background $(-K_X)^3 \mid -mK_X$

Proposition

- If dim S = 0, then $Vol(Y, -K_Y) \le 64$ [Prokhorov 07];
- If dim S = 1, then Vol $(Y, -K_Y) \le 324$;
- If dim S = 2, then $Vol(Y, -K_Y) \le 312$.

Idea of the proof when dim S = 1:

- Suppose Vol(Y, −K_Y) >> 0, then we can use −K_Y to construct singularities on F (connectedness lemma);
- Bound singularities of F (log canonical thresholds; α -invariants).

Proof of the case dim S = 1:

Step 1. Assume to the contrary that $Vol(Y, -K_Y) > 36K_F^2$, then we can find a rational number *s* such that

$$\operatorname{Vol}(Y,-K_Y)>3sK_F^2>36K_F^2.$$

Then

$$\operatorname{Vol}(Y, -K_Y - sF) \geq \operatorname{Vol}(Y, -K_Y) - 3s\operatorname{Vol}(F, -K_F) > 0.$$

Hence there exists an effective \mathbb{Q} -divisor $D \sim_{\mathbb{Q}} -K_Y - sF$ on Y. **Step 2**. Recall that $(Y, \frac{1}{n}M)$ is canonical, consider

$$\left(Y, \left(1-\frac{2}{s}\right)\frac{1}{n}M + \frac{2}{s}D + F_1 + F_2\right)$$

where F_1 , F_2 are general fibers of π , then the connectedness lemma shows that the nonklt locus of this pair is connected.

. Restricting to a general fiber F, we have

•
$$(F, \frac{1}{n}M|_F)$$
 is canonical;

•
$$(F, (1-\frac{2}{s})\frac{1}{n}M|_F + \frac{2}{s}D|_F)$$
 is not klt;

• F is a weak del Pezzo surface;

•
$$\frac{1}{n}M|_F \sim_{\mathbb{Q}} D|_F \sim_{\mathbb{Q}} -K_F.$$

This is an lct-type problem.

Theorem (J.-Zou 21)

Under the above setting, $\frac{2}{s} \geq \frac{1}{6}$.

This contradicts

$$\operatorname{Vol}(Y,-K_Y)>3sK_F^2>36K_F^2.$$

So $\operatorname{Vol}(Y, -K_Y) \leq 36K_F^2 \leq 324$.

< ∃ >

-

Question

Let X be a canonical weak \mathbb{Q} -Fano 3-fold.

- When $h^0(X, -mK_X) > 0$?
- When $h^0(X, -mK_X) \ge 2?$
- When does $|-mK_X|$ define a birational map?

Theorem (Chen-Chen 08)

Let X be a canonical weak \mathbb{Q} -Fano 3-fold.

•
$$h^0(X, -mK_X) > 0$$
 for any $m \ge 6$;

- $h^0(X, -8K_X) \ge 2$ (optimal).
- So far there is no example with $h^0(X, -2K_X) = 0$;
- $X_{24,30} \subset \mathbb{P}(1, 8, 9, 10, 12, 15), \ h^0(X, -7K_X) = 1.$

Theorem ([Chen–J. 16 & 21])

Let X be a canonical weak \mathbb{Q} -Fano 3-fold.

- $|-mK_X|$ is birational for any $m \ge 97$;
- $|-mK_X|$ is birational for any $m \ge 39$ if X is a Q-factorial terminal Q-Fano 3-fold with $\rho(X) = 1$.
- X is birational to a terminal Q-Fano 3-fold Y such that | − mK_Y| is birational for any m ≥ 52.
- $X_{66} \subset \mathbb{P}(1, 5, 6, 22, 33)$, $|-33K_X|$ is birational but $|-32K_X|$ is not.

Theorem ([J.-Zou])

Let X be a canonical weak \mathbb{Q} -Fano 3-fold. Then $|-mK_X|$ is birational for any $m \ge 59$.

The main ingredient is to tell when $|-mK_X|$ is not composed with a pencil.

伺い くさい くさい しきし

Theorem ([Chen–J. 16])

Let X be a canonical weak \mathbb{Q} -Fano 3-fold. If $h^0(X, -m_0K_X) \ge 2$ and $|-m_1K_X|$ is not a pencil, then $|-mK_X|$ is birational $m \ge 3(m_0 + m_1)$.

Theorem ([Chen–J. 16])

Let X be a canonical weak \mathbb{Q} -Fano 3-fold. If $|-mK_X|$ is pencil, then $h^0(-mK_X) \leq r_X(-K_X)^3m + 1$.

We can use Riemann-Roch to estimate $h^0(-mK_X)$ to find *m* breaking this inequality, but $r_X(-K_X)^3$ could be very large.

Theorem ([J.–Zou 22])

Let X be a canonical weak \mathbb{Q} -Fano 3-fold. If $|-mK_X|$ is pencil, then $h^0(-mK_X) \leq 12m + 1$.

Thank you for your attention!

4 3 b

-