Symmetries of Fano varieties
University of Nottingham Online AG Seminar (joint work with Louis Esser and Joaquin Moraga)
Work over \mathbb{C}
\$1. Introduction
Question: How "big" can the aut group of a Fans variety be?
$\operatorname{dim} n=1: g=0 \quad\left(k_{c}<0\right): \mathbb{P}^{\prime} \quad \operatorname{Aar}\left(\mathbb{P}^{\prime}\right)=P Q L_{2}$ $g=1 \quad\left(K_{c} \equiv 0\right): \operatorname{Aut}(C)-C(C) \Delta \operatorname{Aat}(C, 0)$
$\left.g \geqslant 2\left(k_{c}>0\right): \mid A u t c C\right) \mid \leq 84(g-1)$

Question': How "hos-abelian" can Att (Fano) be?
Defn: a group is Jordan $\underset{\text { def }}{\Leftrightarrow} \exists$ constant $J=J(G)$ such that any finite subgroup of G ha) a normal abelian subgroup of index $\leq J$
a family \mathcal{O} of groups is uniformly Jordan \leftrightarrows def every $G 6 \mathcal{g}$ is Jordan, and the same constant J work) for all $G \in G$
The (Jordan 1878) $G L_{n}(\mathbb{C})$ is Jordan
The $\left(\right.$ Collins 2007) For $n \geqslant 71$, the Jordan constant $J\left(G L_{n}(\mathbb{C})\right)=(n+1)$!
from the standard rep. of S_{n+1}
$S_{n+1} \geqslant \mathbb{C}^{n+1}$ by permuting the $n+1$ coordinates
Have a J-dime invariant Mbspace span $\left\{e_{1}+\cdots+e_{n+1}\right\}$
The complement is the standard repn $S_{n+1} \leftrightarrow G L_{n}(\mathbb{C})$
Conditionally on boundedness
H terminal Fan
The (Prokhorov-Shramov-Birkar)
(Fans means $k(t)$
For $n \geq 1$, the family of groups
$\{\operatorname{Bir} X \mid X n$-dimensional rationally connected variety $\}$ is uniformly Jordan
Ul
\{AutX|Xn-dimensional (kt) Fans vanity\} ~
Consequence: In any fixed dim n, get a (non-explicit) bound on the size of a semi-simple subgroup of Ant X for any n-dime Fano X
"has no notitvicil abelian subgroups symmetric group on m elements
In particular, $\exists M(n)=$ maximal m such that $S_{m} \leadsto$ Alt (n-dime Fan variety)

In particular, $\exists M(n)=$ maximal m such that $S_{m} \leftrightarrow$ Ant (n-dime Fan variety)
Examples: 1) $S_{n+1} Q \mathbb{P}^{n}$ by permuting coordinates $\left[x_{0}: \cdots: x_{n}\right]$

$$
S_{n+2} \Omega \mathbb{P}^{n} \text { by stand ard rep }
$$

2) Among rational vanities, can do 1 better

$$
X:=\left(\sum_{i=0}^{n+2} x_{i}=\sum_{i=0}^{n+2} x_{i}^{2}=0\right) \subseteq \mathbb{P}^{n+2}
$$

S_{n+3}-action on \mathbb{P}^{n+2} descends to X
$X \cong$ smooth quadric $\Rightarrow X$ is rational
For $n=1,2, \quad S_{n+3}$ is the largest action:

Den: a Faro variety X is maximally symmetric it it admits a faithful $S_{M(n)}$-action
Question 1: In dim $n \geq 3$, are the n-dimensional maximally symmetric Fano varieties bounded?
Question 2: In $\operatorname{dim} n \geq 3$, are the n-dimensional maximally symmetric Fan varieties irrational?
Rem: Q1: This behavior is very different from abelian actions
Exp: $M(4) \geq 8:$

$$
\left.\begin{array}{l}
M(4) \geqslant \gamma: \\
x_{123}=\left(\sum x_{i}=\sum x_{i}^{2}=\sum x_{i}^{3}=0\right) \subseteq \mathbb{P}^{7} \\
x_{124}=\left(\sum x_{i}=\sum x_{i}^{2}=\sum x_{i}^{4}=0\right) \subseteq \mathbb{P}^{7}
\end{array}\right\}
$$

smooth Fans 4-folds with faithful S_{8}-actions

Theorem 1 (Esser-J.-Moraga) The maximally symmetric Fano 4-folds form a bounded family
(Show S_{8}-equivariant Fan 4 -folds are bounded)
Rem: S_{7}-equivariant fan 4 -folds are unbounded
Reason: $S_{7} 2$ Faro 3-fold Y
can make sone fancily (pros bundles /Y) where meld form an unbounded sequence
§ 2. Bounds on symmetric actions
Theorem 2 (EJM) for $n \geq 1$, let $p_{n}:=$ smallest prime number $>n+1$.

$$
\uparrow
$$

use results of J. Xu on

$$
\begin{aligned}
& \text { Then } M(n)<p_{n+1}(n+1) \\
& \leadsto M(n)<(1+\varepsilon)(n+1)^{2} \\
& \qquad\left[M(n)=\text { maximal } m \text { such that } S_{m} \leftrightarrow \operatorname{Aut}(n \text {-dime Fano variety })\right]
\end{aligned}
$$

p-group axing on $R C$ varieties
For certain classes of Fans vaneties, get sharp bounds
Exmp: Let $X=\left(\sum x_{i}=\sum x_{i}{ }^{2}=\cdots=\sum x_{i}^{m}=0\right) \subseteq \mathbb{P}^{n+m}$
Choose largest m such that X is Fans (ie want $-n-m-1+(1+2+\cdots m)<0$) X is a smooth n-dime Fan variety with a faithful S_{n+m+1}-action

$$
\text { Get } n+m+1=n+\left\lceil\frac{1+\sqrt{8 n+9}}{2}\right\rceil=M_{\text {WCI }}(n)
$$

Theorem $3(E J M)$ Let $X \subseteq \mathbb{P}\left(a_{0,}, a_{N}\right)$ be a quasismooth weighted complete interaction, with a faithful S_{k}-action. Then $k \leq M_{W C I}(n)$, and this pound 1) sharp.

Moreover: 1) If $S_{M_{w C I}(n)} 2 X$, then there is a finite cover $X \rightarrow Y \subseteq \mathbb{P}^{\prime}$ defining ideal of Y is gen by symmetric polynomials
2) If $S_{M_{w c i}(n)} \perp X$ and if X has maximal Fano index, then X is equivariantly som to a complete intersection in proj. space defined by fermat polynomials

	by fermat polynomials							
n	1	2	3	4	5	6	7	8
$M_{W C T}(n)$	4	5	7	8	9	11	12	13
$n+3$	4	5	6	7	8	9	10	$1)$
$\left(S_{n+3} \leftrightarrow C_{r_{n}}(C)\right)$								

Some ingredients of pt ot: The 3

Lift S_{k} action $t \mathbb{P}\left(a_{0},, a_{N}\right)=: \mathbb{P}$

$$
\begin{aligned}
1 \rightarrow \mathbb{C}^{*} \rightarrow & \text { Ant } R \rightarrow \text { Mut } \mathbb{P} \rightarrow 1 \quad R=\mathbb{C}\left[x_{0}, \ldots x_{N}\right] \\
& \text { ut }\left(x_{i}\right)=a_{i} \\
& \prod_{l} G_{N_{l}}(\mathbb{C}) \rightarrow \text { get } \tilde{S}_{H} \leftrightarrow G L_{N_{l}}(\mathbb{C})
\end{aligned}
$$

Use prog rep theory of S_{L} to bound k
Faro assumption on X is used in hurencs

Theoren 4 (EJM) Let $S_{k} 2 n$-dine simplicial toil variety

n	maximal k	optimal examples
1	4	\mathbb{P}^{1}
2	5	$\mathbb{P}^{\prime} \times \mathbb{P}^{1}$
3	6	\mathbb{P}^{3}
4	6	$\mathbb{P}^{4}, \mathbb{P}^{2} \times \mathbb{P}^{2}$
≥ 5	$n+2$	\mathbb{P}^{n}

Idea: Use stucture of Aut (troil vriety) (Cox), ure (pros) repa theory of S_{k} and A_{k}
Question 3: For $n \geq 1$, B $_{\text {wCI }}(n)=M(n)$? oplimal anong fanos T optimal anong quarism WCI Fanod

Recall $S_{n+3} \leftrightarrow C_{n}(\mathbb{C})$ by 2 Femal CI quaric
Question 2': is S_{n+3} the largest symmetric subgroup of $C_{r_{n}}(\mathbb{C})$?
§3. Pf of Theoren 1 (boundedness of S_{8}-Fano-4-folds)
Ide: $S_{8} 2 X=$ Fano 4-fold, $\pi: X \rightarrow Y=X / s_{8}$ quotient

$$
\pi^{*}\left(k_{y}+B_{y}\right)=k_{x}
$$

$\left(y, B_{y}\right) \log$ Faro pair, get 3 cales depending on coreg $(y, B y)$
Deff: (Moraga). the coregulaity of a $\log (Y$ pair (Y, Γ) is

$$
\operatorname{coreg}(y, \Gamma):=\operatorname{dim} Y-\operatorname{dim} D(y, \Gamma)-1
$$

- the coregularity of a $\log \overline{F a n o ~ p a i r}(Y, B)$ is $\operatorname{wreg}(Y, B):=\min \{\operatorname{coreg}(Y, \Gamma) \mid \Gamma \geqslant B$ and $(Y, \Gamma), \log (Y\}$

$$
D(Y, \Gamma)=\text { dual complex: }\left(Y^{\prime}, \Gamma^{\prime}\right) \xrightarrow{\text { det modif }}(Y, \Gamma)
$$

CW comples: vertices $\leftrightarrow E_{i}$ fillinkeclls bared on intersetions of E_{i} 's
Cace 1: 10 org $=4$
Cax 2: vorg $=3$
Cate 2: coreg ≤ 2
(directly show poundechess \uparrow
(ulling Birkar's $B A B$)

Case 3: core ≤ 2
\sim get pair with dual complex $\sim_{\text {PL-homes }}$ to \mathbb{S}^{k} or \mathbb{D}^{k} with $k \leq 3\binom{\left(k_{0} l_{\text {lar }}-\right.}{X_{u}}$ use results of Pardon and classification of actions on spheres to get a contradiction
"S 8 " acts on this
\Rightarrow this care doesnit happen (need many results in topology).

Ingredients of pe of The 1:

- S8 docent act on Faro of $\operatorname{dim} \leq n-1=3$
- So doesn't act an spheres of $\operatorname{din} \leqslant 3$
- dual complex of $\log (y$ parr of $d i m \leqslant 4$ is a quotient of spec or dike of $\operatorname{dim} \leq 3$
- boundedness of Fans 4-folds with log discrep bounded away from 0

Question: : Is $M(n)$ strictly increasing?

