The minimal projective bundle dimension and toric 2-Fano manifolds

Kelly Jabbusch University of Michigan - Dearborn

joint work with Carolina Araujo, Roya Beheshti, Ana-Maria Castravet, Svetlana Makarova, Enrica Mazzon, and Nivedita Viswanathan

May 25, 2023

Background & Motivation: Fano Manifolds

A complex projective manifold X is Fano if $-K_X$ is ample, or equivalently if the the first Chern class $c_1(T_X)$ is positive.

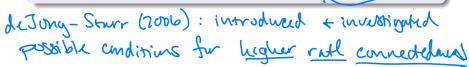
EX: Rⁿ, smooth unplose intersections of law degins, vat 1 homog. Special Properties of Fanos

Theorem: (Mori, 1979)

Any Fano manifold is covered by rational curves.

Theorem: (Campana, Kollár-Miyaoka-Mori, 1992)

Any Fano manifold is rationally connected.



Definition: k-Fano

A smooth projective variety X is 2-Fano if it is Fano and its second Chern character $ch_2(X) = \frac{1}{2}c_1(T_X)^2 - c_2(T_X)$ is positive, i.e., $ch_2(X) \cdot S > 0$ for every surface $S \subset X$.

In a similar way, one can define k-Fano varieties for any $k \ge 2$.

- \mathbb{P}^n is *n*-Fano, and it is conjectured that it is the only *n*-dimensional *n*-Fano manifold.
- The geometry of higher Fano manifolds has been fairly investigated:
 - 2-Fano manifolds + mild assumptions are covered by rational surfaces (de Jong-Starr)
 - similar results hold for higher Fano manifolds (Suzuki), (Nagaoka)

2-Fano: X Fano + chy (x). S>0 & Scx surf.

- Araujo-Castravet give a classification of 2-Fano manifolds of high index largest integer die of -Ky in Pick
- (ABCJMMTV, 2022) gives a classification of homogeneous 2-Fano manifolds
- All known examples of 2-Fano manifolds have Picard number 1 and relatively large index

k-Fano:

- Very few examples of higher Fano manifolds are known
- (ABCJMMTV, 2022) look at 3-Fano manifolds

din V=n Z3, index ix ZN-2 3 Funo: Pn

. Complete int in proj spuel

· complete int in weighted proj space Minimal P-dim and toric 2-Fano manifolds 3 / 16

Projective spaces are the only projective toric manifolds with $\rho(X) = 1$

- a classification of toric 2-Fano manifolds could either
 - provide the first examples of 2-Fano manifolds with higher Picard number,
 - 2) or it could be an evidence that every 2-Fano manifold has $\rho(X) = 1$.

Geometric properties of a toric variety can often be checked in the combinatorics of the associated fan

- This bridge has been exploited in search of new examples of toric 2-Fano manifolds
- A complete (computer aided) classification is only known up to dimension 8 (Nobili) (Sano-Sato-Suyama), and projective spaces remain the only known examples of toric 2-Fano manifolds.

Very explicit - construct a surface $S \subset X$ with $Ch_2(X), S \leq O$

Conjecture

The only toric 2-Fano manifolds are projective spaces.

Idea: investigate 2-Fano manifolds by studying their *minimal dominating families of rational curves*.

Set up: X = smooth and proper toric variety; $X \leftrightarrow \Sigma_X = fan$ $G(\Sigma_X) = the set of primitive generators of one-dimensional cones$

Given a cone $\sigma \in \mathbb{Z}_k$, $\sigma = \langle y_1, \cdots, y_k \rangle$ then $G(\sigma) := \{ y_1, \cdots, y_k \}$

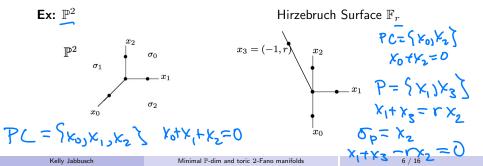
Primitive Collections & Primitive Relations

 $P = \{x_1, x_2, \dots, x_h\} \subseteq G(\Sigma_X) \text{ is a <u>primitive collection</u> if} \\ \langle x_1, x_2, \dots, x_h \rangle \notin \Sigma_X \text{ but } \langle x_1, \dots, \hat{x_i}, \dots, x_h \rangle \in \Sigma_X, 1 \le i \le h; \end{cases}$

Let $\sigma_P = \langle y_1, \ldots, y_k \rangle$ be minimal cone such that $x_1 + \cdots + x_h \in \sigma_P$, then there is a *primitive relation*

$$x_1 + \dots + x_h - (a_1 y_1 + \dots + a_k y_k) = 0$$
 $a_i > 0$

Any smooth toric variety X of dim n has at least one primitive relation of the form $x_1 + x_2 + \cdots + x_k = 0$, for some $2 \le k \le n + 1$



Centrally Symmetric Primitive Relations

(Chen-Fu-Hwang): Minimal dominating families of rational curves on a smooth projective toric variety X correspond to <u>primitive relations</u> of the form

$$x_0 + \dots + x_m = 0, \tag{(*)}$$

these primitive relations are called *centrally symmetric of order* m + 1.

Centrally symmetric primitive collections of order
$$m + 1$$

 \uparrow
Open dense T -invariant $U \subset X$ and \mathbb{P}^m -bundle $U \to W$
CFH wanted U "Small"
- Wante U as big as possible.

 $X_0 + X_1 + \dots + X_n = D$

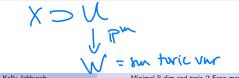
Given $P = \{x_0, x_1, \ldots, x_m\}$, a centrally symmetric primitive collection on X.

 $\mathcal{E}_P := \{ \sigma \in \Sigma_X \mid P \cap G(\sigma) = \emptyset \text{ and } \exists P' \subsetneq P \text{ such that } P' \cup G(\sigma) \in \mathsf{PC}(X) \}$

$$\underbrace{V(\mathcal{E}_P)}_{\sigma \in \mathcal{E}_P} := \bigcup_{\sigma \in \mathcal{E}_P} V(\sigma) \subset X$$

Proposition (ABCJMMV):

 $U = X \setminus V(\mathcal{E}_P)$ admits a \mathbb{P}^m -bundle structure over a smooth toric variety.



The minimal projective bundle dimension of X

Defn: minimal projective bundle dimension of X (minimal \mathbb{P} -dimension)

$$m(X) = \min_{m \in \mathbb{Z}_{>0}} \left\{ \exists \text{ a prim relation } x_0 + \dots + x_m = 0 \right\} \in \{1, \dots, \dim X\}$$

$\dim(X)$	# Fanos	#(m=1)	#(m=2)	#(m=3)	#(m=4)	#(m=5)	#(m=6)
4	124	107	15	1	1 P4		
5	866	744	112	8	1	J &2	
6	7622	6 <mark>333</mark>	1174	105	8	1	1 P

Table: The minimal P-dimension of toric Fano manifolds of low dimension. The along (Thanks to Will Reynolds)

m(X) = 1 Goal is to show X is <u>not</u> 2-Find Explicitly construct surf C X with $C_{\lambda}(x)$

Given $P = \{x, -x\}$ a primitive collection of X, and using results of Casagrande, we can construct $f: X \to Y$ birational, such that

- $P_Y := \{x, -x\}$ is a primitive collection of Y,
- $V(\mathcal{E}_{P_Y})$ has codim ≥ 2 in Y,
- f is a composition of at most 2 blow-downs with disjoint centers and smooth target

Construct a surface $S \subset Y$:

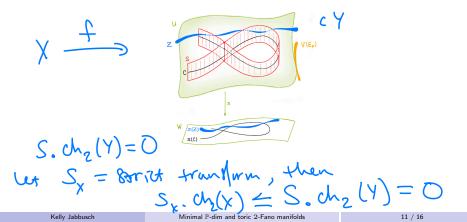
$$U = Y \setminus V(\mathcal{E}_{P_Y})$$

$$Z = closed subset$$
in Y of codinZ2
$$S = \pi^{-1}(\pi(c)) c U$$
in first
$$C = U \setminus Z$$
very free rayl
$$U = Y \setminus V(\mathcal{E}_{P_Y})$$

$$S = \pi^{-1}(\pi(c)) c U$$
in first
$$S = \pi^{-1}(\pi(c)) c U$$
in first
$$S = \pi^{-1}(\pi(c)) c U$$
is the second se

Theorem (ABCJMMV)

Let X be a smooth toric Fano variety with m(X) = 1. Then X is not 2-Fano.



 $\underline{m}(X) = \dim X$: Projective spaces are the only toric manifolds admitting a centrally symmetric primitive relation of order $\dim(X) + 1$.

 $\underline{m(X)} = \underline{\dim X} - 1$: Chen-Fu-Hwang classify toric Fano manifolds admitting a centrally symmetric primitive relation of order $\underline{\dim}(X)$.

- There are three such varieties, and two of them also admit a centrally symmetric primitive relation of order 2,
- The only *n*-dimensional toric Fano manifold X with m(X) = n 1 is the blowup of \mathbb{P}^n along a linear \mathbb{P}^{n-2} .

Toric Fano manifolds X with large values of m(X)

 $\underline{m}(X) = \underline{\dim X} - 2$: Beheshti-Wormleighton investigate toric manifolds admitting a centrally symmetric primitive relation of order $\underline{\dim}(X) - 1$

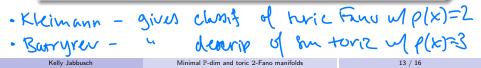
- show that they have Picard number $\rho(X) \leq 5$.
- most of these varieties also admit centrally symmetric primitive relations of order 2 or 3

Theorem (ABCJMMV)

Let X be a toric Fano manifold with $\dim(X) = n \ge 6$ and $m(X) \ge 3$. If X has a centrally symmetric primitive relation of order n - 1,

$$x_0 + x_1 + \dots + x_{n-2} = 0,$$

then $\rho(X) \leq 3$. Moreover, m(X) = n - 2 and the above relation is the only centrally symmetric primitive relation of X.



Classification of toric Fano mflds, $m(X) \ge \dim(X) - 2$

Theorem (ABCJMMV): Let X be a toric Fano manifold with $m(X) \ge \dim(X) - 2$

- (1) The only *n*-dimensional toric Fano manifold X with m(X) = n is \mathbb{P}^n . $\swarrow 2$ -Fano
- (2) For $n \geq 3$, the only *n*-dimensional toric Fano manifold X with m(X) = n 1 is the blowup of \mathbb{P}^n along a linear \mathbb{P}^{n-2} .
- (3) For $n \ge 6$, there are eight distinct isomorphism classes of n-dimensional toric Fano manifolds X with m(X) = n - 2:
 - (a) $X = \mathbb{P}_S(\mathcal{E})$ is a \mathbb{P}^{n-2} -bundle over a toric surface S, where (S, \mathcal{E}) :
- $\begin{array}{c} & \tilde{S} = \mathbb{P}^2 \text{ and } \mathcal{E} = \mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}^{\oplus n-2}, \\ \bullet & S = \mathbb{P}^2 \text{ and } \mathcal{E} = \mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}^{\oplus n-3}, \\ \bullet & S = \mathbb{P}^2 \text{ and } \mathcal{E} = \mathcal{O}_{\mathbb{P}^2}(2) \oplus \mathcal{O}_{\mathbb{P}^2}^{\oplus n-2}, \end{array}$
 - $\sim S = \mathbb{P}^1 \times \mathbb{P}^1 \text{ and } \mathcal{E} = \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1,1) \oplus \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}^{\oplus n-2}$

$$O(X) = S = \mathbb{P}^1 \times \mathbb{P}^1 \text{ and } \mathcal{E} = \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1, 0) \oplus \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(0, 1) \oplus \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}^{em-3}$$

• $S = \mathbb{F}_1 \text{ and } \mathcal{E} = \mathcal{O}_{\mathbb{F}_*}(e+f) \oplus \mathcal{O}_{\mathbb{P}^*}^{em-2}, \text{ where } e \subset \mathbb{F}_1 \text{ is the} -$

- $S = \mathbb{F}_1$ and $\mathcal{E} = \mathcal{O}_{\mathbb{F}_1}(e+f) \oplus \mathcal{O}_{\mathbb{F}_1}^{\oplus n-2}$, where $e \subset \mathbb{F}_1$ is the -1-curve, and $f \subset \mathbb{F}_1$ is a fiber of $\mathbb{F}_1 \to \mathbb{P}^1$.
- (b) Let $Y \simeq \mathbb{P}_{\mathbb{P}^2}(\mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}^{\oplus n-2})$ be the blowup of \mathbb{P}^n along a linear subspace $L = \mathbb{P}^{n-3}$, and denote by $E \subset Y$ the exceptional divisor. Then X is the blowup of Y along a codimension 2 center $Z \subset Y$, where:
- *C* is the intersection of *E* with the strict transform of a hyperplane of Pⁿ containing the linear subspace *L*, or *Z* is the intersection of the strict transforms of two hyperplanes of Pⁿ, one
 - containing the linear subspace L, and the other one not containing it.

net - Fund

Corollary

The projective space \mathbb{P}^n is the only smooth $n\text{-dimensional toric }2\text{-}\mathsf{Fano}$ manifold with m(X)=1,n-2,n-1,n.

To Do: Address the "middle cases"

	# Fanos	#(m=1)	#(m=2)	#(m=3)	#(m=4)	#(m=5)	#(m=6)
4	124	107	15	1	1		
5	866	744	112	8	1	1	
6	7622	<mark>6333</mark>	1174	105	8	1	1

Thank you!

May 2022 at ICERM