Laurent Smoothing

Turin Degenerations

 \& Mirror SymmetryTristan Hübsch

w/ Per Berglund
@ University of Nottingham; 2022.08.25

Departments of Physics \& Astronomy and Mathematics, Howard University, Washington DC Department of Physics, Faculty of Natural Sciences, Novi Sad University, Serbia

Department of Mathematics, University of Maryland, College Part, MD

Laurent Mirror-Models

Playbill

Prehistoric Prelude

Meromorphic Madrigal

Minuet

 MarchLaurent-Toric Fugue* Discriminant Divertimento Mirror Motets

* "It doesn't matter what ít's called, ...as long as it has substance."
- S.-T. Yau

How Hard Can it Be?

Constructing CY \subset Some "Nice" Ambient Space
Q Reduce to 0 dimensions: $\mathbb{P}^{4}[5] \rightarrow \mathbb{P}^{3}[4] \rightarrow \mathbb{P}^{2}[3] \rightarrow \mathbb{P}^{1}[2]$

Pre-Historic Prelude

Classical Constructions - a Summary

nice "ambient space"
Complete Intersection: $X=\left(\cap_{i}\left\{f_{i}(x)=0\right\}\right) \subset A=\prod_{i} \mathbb{P}^{n_{i}}, \mathbb{P}_{\vec{W}}^{n_{i}}$, toric \ldots Q where $f_{i}(x) \in \Gamma\left(\mathscr{L}_{i}\right) ; \mathfrak{X}_{i}=\left\{f_{i}(x)=0\right\} \subset A$ Tian-Yau: $\{\text { Fano }\}_{c}\{C X Y\}_{c}=\{C \mathrm{CY}\}_{n c}$ Also: $\left\{\mathscr{F}_{x}^{*}\right\}=\{\mathrm{CY}\}_{n c}$ ${ }^{9}$ Koszul resolutions: $\mathscr{L}_{i}^{*} \stackrel{\cdot \dot{f}_{i}}{\hookrightarrow} \widehat{O}_{n_{j<i} \mathcal{X}_{j} \rightarrow \mathcal{O}_{n_{j<i} \mathcal{X}_{j}}}$ multiplication by

甲 Transversality: $\left\{\wedge_{i} \mathrm{~d} f_{i} \neq 0\right\} \cap\left\{f_{i}=0\right\} \not \subset A$
\odot Calabi-Yau: $\operatorname{det}\left[\oplus_{i} \mathscr{L}_{i}\right]=\mathscr{K}_{A}^{*}:=\operatorname{det}\left[T_{A}\right] \Leftrightarrow \operatorname{det}\left[T_{X}\right]=\mathcal{O}_{X}$
$Q^{\text {"Hodge diamond," }} H^{p, q}(X)=H^{q}\left(X, \wedge^{p} T_{X}^{*}\right)$, also $H^{q}\left(X, \operatorname{End} T_{X}\right)$
Q Long exact cohomology sequences
Q Bott-Borel-Weil: $\mathbb{P}^{n}=\frac{U(n+1)}{U(n) \times U(1)}, f_{i}(x) \& H^{*}\left(\mathbb{P}^{n}, \mathscr{L}_{i}\right) U(n+1)$-tensors

+ Macaulay2, SAGE, Magma, ... (new trieks/old dogs...)

Pre-Historic Prelude

Classical Constructions (\& smooth $h_{\mathbb{R}}$ models 2)
Q E.g: $\quad X_{m} \in\left[\begin{array}{c|c|c}{\left[\begin{array}{c}\mathbb{P}^{4} \\ \mathbb{P}^{1}\end{array}\right.} & m & 1 \\ \hline\end{array}\right]_{-168}^{(2,86)}$

$$
\begin{aligned}
& \frac{1}{2} b_{3}-1=86=h^{2,1} \text { dim. space of complex structures } \\
& -168=\chi=2\left(h^{1,1}-h^{2,1}\right) \text { the Euler \# }
\end{aligned}
$$

Zero-set of $p(x, y)=0, \operatorname{deg}[p]=\binom{1}{m}, \& q(x, y)=0, \operatorname{deg}[q]=\binom{4}{2-m}$
Generic $\{p=0\} \cap\{q=0\}$ smooth; $\operatorname{deg}_{\mathbb{P}_{n}}[p]+\operatorname{deg}_{\mathbb{P}_{n}}[q]=n+1 \Rightarrow c_{1}=0$

- Sequentially: $X_{m} \xrightarrow{q=0}\left(F_{m} \xrightarrow{p=0} \mathbb{P}^{4} \times \mathbb{P}^{1}\right) q(x, y) \stackrel{?}{\sim} \frac{q_{0}(x)}{y_{0}}+\frac{q_{1}(x)}{y_{1}}$
© Chen: $c=\frac{\left(1+J_{1}\right)^{5}\left(1+J_{2}\right)^{2}}{\left(1+J_{1}+m J_{2}\right)\left(1+4 J_{1}+(2-m) J_{2}\right)}=1+\left[6 J_{1}^{2}+(8-3 m) J_{1} J_{2}\right]-\left[20 J_{1}^{3}-\left(32+15 m J_{1}^{2} J_{2}\right)\right]$.
- C.T.C.Wall: $\left(a J_{1}+b J_{2}\right)^{3}=[2 a+3(\underline{4 b+m a})] a^{2} C_{4-k}\left[\left(a J_{1}+b J_{2}\right)^{k}\right]=f_{k}(\underline{4 b+m a})$
- $p_{1}\left[a J_{1}+b J_{2}\right]=-88 a-12(\underline{4 b+m a}) \ldots$ the same " $4 b+m a$ "

Q So, $F_{m} \approx_{\mathbb{R}} F_{m(\bmod 4)} \& X_{m} \approx_{\mathbb{R}} X_{m(\bmod 4)}: 4$ diffeomorphism types
.but, $m=0,1,2,3 \Rightarrow \operatorname{deg}[q]=\binom{4}{-1}$?!

Meromorphic Madrigal

Why Haven't We Thought of This Before?
$Q \operatorname{deg}[q]=\binom{4}{-1}$ holomorphic sections?!
9 Not everywhere on $\mathbb{P}^{4} \times \mathbb{P}^{1}$ - (simple poles)
[AAGGL:1507.03235+BH:1606.07420] $\frac{[+ \text { GvG:1708.00517] }}{}$ Q but yes on $F_{3}^{(4)} \measuredangle \mathbb{P}^{4} \times \mathbb{P}^{1}-\geqslant 105$ of 'em!

9 How? On $F_{3}^{(4)}, q(x, y) \simeq q(x, y)+\lambda \cdot p(x, y) \leftarrow$ equivalence class!

- [Hirzebruch, 1951] $\Rightarrow p=x_{0} y_{0}{ }^{3}+x_{1} y_{1}{ }^{3} \& q=c(x)\left(\frac{x_{0} y_{0}}{y_{1}{ }^{2}}-\frac{x_{1} y_{1}}{y_{0}{ }^{2}}\right) \operatorname{deg}[c]=\binom{3}{0}$
- So, $\quad q_{0}=q(x, y)+\frac{\lambda c(x)}{\left(y_{0} y_{1}\right)^{2}} p(x, y) \stackrel{\lambda \rightarrow-1}{=} c(x)\left(-2 \frac{x_{1} y_{1}}{y_{0}^{2}}\right)$ where $y_{0} \neq 0$

Q \& $\quad q_{1}=q(x, y)+\frac{\lambda c(x)}{\left(y_{0} y_{1}\right)^{2}} p(x, y) \stackrel{\lambda \rightarrow 1}{=} c(x)\left(2 \frac{x_{0} y_{0}}{y_{1^{2}}}\right)$ where $y_{1} \neq 0$
Q\& $q_{1}(x, y)-q_{0}(x, y)=2 \frac{c(x)}{\left(y_{0} y_{1}\right)^{2}} p(x, y)=0$, on $F_{3}:=\{p(x, y)=0\}$
Q [GvG, 1708.00517] scheme-th. "generalized complete intersections" Reverse-engineered: Mayer-Vietoris sequence \& "patching" of the two charts

Meromorphic Madrigal

in well-tempered counterpoint [BH:1606.07420, 1611.10300 \& 2205.12827]

 even $p(x, y ; 0)$ is transverse, $p^{-1}(0)$ is smooth

- The central ($\epsilon=0$) member of the family is a Hirzebruch scroll F_{m} :

Qirectrix: $S:=\{\mathfrak{\xi}(x, y)=0\},[S]=\left[H_{1}\right]-m\left[H_{2}\right] \&[S]^{n}=-(n-1) m$;
Q where $\mathfrak{B}(x, y):=\left(\frac{x_{0}}{y_{1} m^{m}}-\frac{x_{1}}{y_{0^{\prime \prime}}}\right)+\frac{\lambda}{\left(y_{0} y_{1}\right)^{m}}\left[x_{0} y_{0}^{m}+x_{1} y_{1}^{m}\right] \quad$ degree $\left(-\frac{1}{m}\right)$
$\& \underline{h^{0}\left(K^{*}\right)}=3\binom{2 n-1}{n}+\delta_{\epsilon, 0} 0_{3}^{m}\binom{2 n-2}{2}(m-3), \underline{h^{0}(T)}=n^{2}+2+\delta_{\epsilon, 0} 9_{1}^{m}(n-1)(m-1)$
Q \& $\underline{h^{1}\left(K^{*}\right)}=\delta_{\epsilon, 0} 0_{3}^{m}\binom{2 n-2}{2}(m-3), \quad \underline{h^{1}(T)}=\delta_{\epsilon, 0} \vartheta_{1}^{m}(n-1)(m-1)$
Q All these "exceptionals" cancel from H^{*} for $\left(\epsilon_{\alpha} \neq 0\right)$ deformations resulting in discrete deformations $F_{m}^{(n)} \rightarrow F_{\left(m_{1}, m_{2}, \ldots\right)}^{(n)} \& \cdots \& \approx_{\mathbb{R}} F_{[m(\bmod n]]}^{(n)}$
© These $F_{\left(m_{1}, m_{2}, \ldots\right)}^{(n)}$'s are distinct toric varieties... $\mathrm{w} /\left\{\mathfrak{\mathfrak { G }}_{r}, r \leqslant m_{i}\right\}$

Meromorphic Madrigal

....in well-tempered counterpoint [BH:1606.07420, 1611.10300 \& 2205.12827]
On $F_{m}^{(n)}: p(x, y ; 0)=x_{0} y_{0}^{m}+x_{1} y_{1}^{m}=0 \Rightarrow x_{0}=-x_{1}\left(y_{1} / y_{0}\right)^{m} \& x_{1} \rightarrow X_{1}=\mathfrak{Z}^{+ \text {more }}$
$\bullet \&\left(X_{i}, i=2, \cdots, n+2\right)=\left(x_{2}, \cdots, x_{n} ; y_{0}, y_{1}\right)$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0 \leftrightarrow \mathbb{P}^{4}$
$-m$	0	0	0	1	$1 \leftrightarrow \mathbb{P}^{1}$

9 BTW, $\operatorname{det}\left[\frac{\partial\left(p(x, y), \mathfrak{B}(x, y), x_{2}, \cdots ; y_{0}, y_{1}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, \cdots ; y_{0}, y_{1}\right)}\right]=$ const.
$-m \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \leftrightarrow \mathbb{p}^{1}$
9 Need $\operatorname{deg}[f(X)]=\binom{4}{2-m}$, with $\operatorname{deg}\left[X_{1} X_{5,6}^{m}\right]=\binom{1}{0}=\operatorname{deg}\left[X_{2,3,4}\right]$

- $f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \oplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2} \oplus X_{2,3,4}^{4} X_{5,6}^{\sqrt{2-m}}$
- $m>2$,

Meromorphic Madrigal

....in well-tempered counterpoint [BH:1606.07420, 1611.10300 \& 2205.12827]
On $F^{(n)} \cdot p(x, y \cdot 0)=x_{1} y^{m}+x_{1} y^{m}=0 \Rightarrow x_{0}=-x_{1}\left(y_{1} / y_{0}\right)^{m} \& x_{1} \rightarrow X_{1}=\mathfrak{e}^{+ \text {more }}$
$\bullet \&\left(X_{i}, i=2, \cdots, n+2\right)=\left(x_{2}, \cdots, x_{n} ; y_{0}, y_{1}\right)$
$\begin{array}{lllllll}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6}\end{array}$
$Q \mathbb{P}^{4} \times \mathbb{P}^{1}$ bi-degree \rightarrow toric $\left(\mathbb{C}^{\times}\right)^{2}$-action:
9 BTW, $\operatorname{det}\left[\frac{\partial\left(p(x, y), \mathfrak{B}(x, y), x_{2}, \cdots ; y_{0}, y_{1}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, \cdots ; y_{0}, y_{1}\right)}\right]=$ const.
$-m \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \leftarrow \mathbb{p}^{1}$

9 Need $\operatorname{deg}[f(X)]=\binom{4}{2-m}$, with $\operatorname{deg}\left[X_{1} X_{5,6}^{m}\right]=\binom{1}{0}=\operatorname{deg}\left[X_{2,3,4}\right]$

- $f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \oplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2}$
standard wisdom
- $m>2,\{f(X)=0\}=\left\{X_{1}=0\right\} \cup\left\{\oplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+k m}=0\right\}$
- $\{f(X)=0\}^{\sharp}=\left\{X_{1}=0\right\} \cap\left\{\oplus_{k=0}^{3} X_{1}^{k} X_{2,3,4}^{4-k} X_{5,6}^{2+k m}=0\right\}$

itself a codimension-2 Calabi-Yau

Meromorphic Madrigal

...in well-tempered counterpoint
[BH:1606.07420, $1611.10300 \& 2205.12827]$
On $F^{(n)}: p(x, y ; 0)=x_{0} y^{m}+x_{1} y_{1}^{m}=0 \Rightarrow x_{0}=-x_{1}\left(y_{1} / y_{0}\right)^{m} \& x_{1} \rightarrow X_{1}=e^{+ \text {more }}$
$9 \&\left(X_{i}, i=2, \cdots, n+2\right)=\left(x_{2}, \cdots, x_{n} ; y_{0}, y_{1}\right) \frac{X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}}{\substack{ \\1 \\ 1}}$ $Q \mathbb{P}^{4} \times \mathbb{P}^{1}$ bi-degree \rightarrow toric $\left(\mathbb{C}^{\times}\right)^{2}$-action: $\begin{array}{rrrrrr}1 & 1 & 1 & 1 & 0 & 0 \leftrightarrow \mathbb{p}^{4} \\ -m & 0 & 0 & 0 & 1 & 1 \leftrightarrow \mathbb{p}^{1}\end{array}$ - BTW, $\operatorname{det}\left[\frac{\partial\left(p(x, y), \mathfrak{B}(x, y), x_{2}, \cdots ; y_{0}, y_{1}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, \cdots ; y_{0}, y_{1}\right)}\right]=$ const.

Q Need $\operatorname{deg}[f(X)]=\binom{4}{2-m}$, with $\operatorname{deg}\left[X_{1} X_{5,6}^{m}\right]=\binom{1}{0}=\operatorname{deg}\left[X_{2,3,4}\right]$

- $f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \oplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2}$ standard wisdom
- $m>2,\{f(X)=0\}=\left\{X_{1}=0\right\} \cup\left\{\oplus_{k} X_{1}{ }^{k} X_{2,3,4}^{2} X_{5,6}^{2+k m}=0\right\}$
- $\{f(X)=0\}^{\sharp}=\left\{X_{1}=0\right\} \cap\left\{\oplus_{k=0}^{3} X_{1}^{k} X_{2,3,4}^{4-k} X_{5,6}^{2+k m}=0\right\}$

itself a
codimension-2 Calabi-Yau

Meromorphic Minuet
 ...with a meandering melody

Q Algorithm:
Construction 2.1 Given a degree $-\frac{1}{m}$) hypersurface $\left\{p_{\vec{\epsilon}}(x, y) 0\right\} \subset \mathbb{P}^{n} \times \mathbb{P}^{1}$ as in (2.2), construct

$$
\operatorname{deg}=\binom{1}{m-r_{0}-r_{1}}: \quad \mathfrak{s}_{\vec{\epsilon}}(x, y ; \lambda):=\operatorname{Flip}_{y_{0}}\left[\frac{1}{y_{0}^{r_{0}} y_{1}^{r_{1}}} p_{\vec{\epsilon}}(x, y)\right]\left(\bmod p_{\vec{\epsilon}}(x, y)\right), \quad\left[\begin{array}{c||c}
\mathbb{P}^{n} & 1 \\
\mathbb{P}^{1} & m
\end{array}\right]
$$

progressively decreasing $r_{0}+r_{1}=2 m, 2 m-1, \cdots$, and keeping only Laurent polynomials containing both $y_{0}-$ and y_{1}-denominators but no y_{0}, y_{1}-mixed ones. The "Flip $y_{y_{i}}$ " operator changes the relative sign of the rational monomials with y_{i}-denominators. For algebraically independent such sections, restrict to a subset with maximally negative degrees that are not overall (y_{0}, y_{1})-multiples of each other.
E.g.: p0 = $\mathrm{x}_{0} y_{0}{ }^{2}+\mathrm{x}_{1} y_{1}{ }^{2}$; ep $\left[\alpha_{-}\right]:=\operatorname{Table}\left[\frac{1}{y_{0}{ }^{\alpha-i} y_{1}{ }^{i}},\{i, 0, \alpha\}\right]$; Expand/@ (p0 \{ep[5], ep[4], ep[3]\})
$\left\{\left\{\frac{x_{0}}{y_{0}^{3}}+\frac{x_{1} y_{1}^{-}}{y_{0}^{5}}, \frac{x_{0}}{y_{0}^{2} y_{1}^{2}}+\frac{x_{1} y_{1}}{y_{0}^{4}}, \frac{x_{1}}{y_{0}^{3}}+\frac{x_{0}}{y_{1} y_{1}^{2}}, \frac{x_{0}}{y_{1}^{3}}+\frac{x_{1}}{y_{0}^{2}}, \frac{x_{0} y_{0}}{y_{1}}+\frac{x_{1}}{x_{0}}, \frac{x_{0} y_{0}}{y_{1}^{2}}+\frac{x_{1}}{y_{1}^{3}}, \frac{y_{1}, y_{0}}{1}\right.\right.$,

9 finds $\mathfrak{F}(x, y)=\left(\frac{x_{0}}{y_{1}{ }^{2}}-\frac{x_{1}}{y_{0}{ }^{2}}\right) \bmod \left(x_{0} y_{0} 2+x_{1} y_{1} 2\right) ; \operatorname{deg}=\binom{1}{-2}, \quad\left[\mathfrak{B}^{-1}(0)\right]=\left[J_{1}\right]-2\left[J_{2}\right]$.
THE exceptional curve $[S]^{2}=-1$ in $F_{2}^{(2)}$

Meromorphic Minuet

...with a meandering melody
Deform: $p_{1}(x, y)=x_{0} y_{0}{ }^{5}+x_{1} y_{1}{ }^{5}+x_{2} y_{0} y_{1}{ }^{4} \quad$ toric $F_{(4,1,0, \ldots)}$
9 Find: $\mathfrak{B}_{1,1}(x, y)=\frac{x_{0} y_{0}}{y_{1}{ }^{5}}+\frac{x_{2}}{y_{1}{ }^{4}}-\frac{x_{1}}{y_{1}{ }^{4}} \& \mathfrak{J}_{1,2}(x, y)=\frac{x_{0}}{y_{1}}-\frac{x_{2}}{y_{0}}-\frac{x_{1} y_{1}{ }^{4}}{y_{0}{ }^{5}}$
Q \& det \(\left[\begin{array}{l}\partial\left(p_{1}, \mathfrak{s}_{1,1}, \mathfrak{s}_{1,2}, x_{3}, \cdots ; y_{0}, y_{1}\right)

\hline \partial\left(x_{0}, x_{1}, x_{2}, x_{3}, \cdots ; y_{0}, y_{1}\right)\end{array}\right]=\) const. | X_{1} | X_{2} | X_{3} | X_{4} | X_{5} | X_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | 0 |
| -4 | -1 | 0 | 0 | 1 | $1-\mathrm{pl}^{1}$ |

9 Deform: $p_{2}(x, y)=x_{0} y_{0} 5+x_{1} y_{1} 5+x_{2} y_{0} y_{1} y_{1}^{3} \quad$ toric $F_{(3,2,0, \ldots)}^{(n)}$ © Find: $\mathfrak{B}_{2,1}(x, y)=\frac{x_{0} y_{0}{ }^{2}}{y_{1}{ }^{5}}+\frac{x_{2}}{y_{1}{ }^{3}}-\frac{x_{1}}{y_{1}{ }^{3}} \& \mathfrak{G}_{2,2}(x, y)=\frac{x_{0}}{y_{1}{ }^{2}}-\frac{x_{2}}{y_{0}{ }^{2}}-\frac{x_{1} y^{3}{ }^{3}}{y_{0}{ }^{5}}$

Q \& det $\left[\frac{\partial\left(p_{2}, \mathfrak{z}_{2,1}, \mathfrak{s}_{2,2}, x_{3}, \cdots ; y_{0}, y_{1}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, x_{3}, \cdots ; y_{0}, y_{1}\right)}\right]=$ const. | X_{1} | X_{2} | X_{3} | X_{4} | X_{5} | X_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | $0-\mu^{4}$ |

$\odot \ldots$ and $p_{3}(x, y)=x_{0} y_{0} 5+x_{1} y_{1}^{5}+x_{2} y_{0}{ }^{2} y_{1}^{3}+x_{3} y_{0}{ }^{3} y_{1}{ }^{2}$
\otimes toric $F_{(2,2,1, \ldots)}^{(n)}$ for $n=3, F_{(2,2,1)}^{(3)} \approx F_{(1,1,0)}^{(3)}$

Meromorphic March

...back to the medial motif
On $F_{m}^{(n)}: x_{0} y_{0}^{m}+x_{1} y_{1}^{m}=0 \Rightarrow x_{0}=-x_{1}\left(y_{1} / y_{0}\right)^{m} \& x_{1} \rightarrow X_{1}=\mathfrak{马}$
$\bullet \&\left(X_{i}, i=2, \cdots, n+2\right)=\left(x_{2}, \cdots, x_{n} ; y_{0}, y_{1}\right)$

| X_{1} | X_{2} | X_{3} | X_{4} | X_{5} | X_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | | 0 | 0 |

$Q \mathbb{P}^{4} \times \mathbb{P}^{1}$ bi-degree \rightarrow toric $\left(\mathbb{C}^{\times}\right)^{2}$-action:
$\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 0 & \mathbb{p}^{4}\end{array}$

Q Need $[f(X)]=\binom{4}{2-m}$, with $\operatorname{deg}\left[X_{1} X_{5,6}^{m}\right]=\binom{1}{0}=\operatorname{deg}\left[X_{2,3,4}\right]$
Q $f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \oplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2} \quad \begin{gathered}\text { standard } \\ \text { wisdom }\end{gathered}$

- $m>2,\{f(X)=0\}=\left\{X_{1}=0\right\} \cup\left\{\oplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+k m}=0\right\}$
- $\{f(X)=0\}^{\sharp}=\left\{X_{1}=0\right\} \cap\left\{\oplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+k m}=0\right\}: R_{\mu \nu}=0$

Meromorphic March

...back to the medial motif
On $F_{m}^{(n)}: x_{0} y_{0}^{m}+x_{1} y_{1}^{m}=0 \Rightarrow x_{0}=-x_{1}\left(y_{1} / y_{0}\right)^{m} \& x_{1} \rightarrow X_{1}=\mathfrak{3}$
$\bullet \&\left(X_{i}, i=2, \cdots, n+2\right)=\left(x_{2}, \cdots, x_{n} ; y_{0}, y_{1}\right)$
$\begin{array}{llllll}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6}\end{array}$
$Q \mathbb{P}^{4} \times \mathbb{P}^{1}$ bi-degree \rightarrow toric $\left(\mathbb{C}^{\times}\right)^{2}$-action:
$\begin{array}{llllll}1 & 1 & 1 & 1 & 0 & 0\end{array} \mathbb{p}^{4}$
Q BTW, $\operatorname{det}\left[\frac{\partial\left(p(x, y), \mathfrak{B}(x, y), x_{2}, \cdots ; y_{0}, y_{1}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, \cdots ; y_{0}, y_{1}\right)}\right]=$ const.
$-m \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \leftarrow \mathbb{P}^{1}$
\bullet Need $[f(X)]=\binom{4}{2-m}$, with $\operatorname{deg}\left[X_{1} X_{5,6}^{m}\right]=\binom{1}{0}=\operatorname{deg}\left[X_{2,3,4}\right]$
$\left.\begin{array}{l}\text { 9 } f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \oplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2} \oplus X_{2,3,4}^{4} X_{5,6}^{\sqrt{2-m}} \\ m>2,]\end{array} f(X)=0\right\}$,

Meromorphic March

...back to the medial motif
$f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \bigoplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2} \bigoplus X_{2,3,4}^{4} X_{5,6}^{2-m}$

- $m>2$, Laurent terms \& "intrinsic limit" : !? :
- "Intrinsic limit" (L'Hopital's rule)
- Toy example: $f(x)=x_{3} 5+x_{4} 5+\frac{x_{2}{ }^{2}}{x_{4}}=0$ near $x_{4}=0$

BH

Q Well, away from $x_{4}=0, x_{3} 5+x_{4} 5+\frac{x_{2}{ }^{2}}{x_{4}}=0$ is well and spry
Q so $x_{2}^{2}=-\left(x_{3} 5 x_{4}+x_{4} 6\right)_{x_{4} \neq 0} \mapsto x_{2} \xlongequal{f(x)=0} x_{2}\left(x_{3}, x_{4}\right) \quad$ just like lim

- Then, $\lim _{x \rightarrow 0}\left(x_{3} 5+x_{4} 5+\left(\frac{x_{2}\left(x_{3}, x_{4}\right)^{2}}{x_{4}}\right)=\left(x_{3}^{5}\right)+(0)+\left(-x_{3} 5\right)=0 \quad x_{x \rightarrow 0}\right.$
Or, maybe:

Meromorphic March

 ...back to the medial motif$\vartheta f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \oplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2} \oplus X_{2,3,4}^{4} X_{5,6}^{2-m}$

- $m>2$, Laurent terms \& "intrinsic limit" : !? ?

Q Virtual varieties [F. Severi], i.e., Weil divisors
QE.g., $\mathbb{P}_{(3: 1: 1)}^{2}[5]: 0=x_{3} 5+x_{4} 5+\frac{x_{2}{ }^{2}}{x_{4}}=\frac{x_{3}{ }^{5} x_{4}+x_{4}{ }^{6}+x_{2}{ }^{2}}{x_{4}}$

[dda. Aholampour]

- Denominator contributions tend to subtract from those of the numerator

Q Change variables [David Cox]: $\left(x_{2}, x_{3}, x_{4}\right) \mapsto\left(z_{3} \sqrt{z_{2}}, z_{1}{ }^{2}, z_{2}\right)$
$-x_{3} 5+x_{4} 5+\frac{x_{2}^{2}}{x_{4}} \mapsto z_{1} 10+z_{2}^{5}+z_{3}^{2}$ in $\mathbb{P}_{(1: 2: 5)}^{2}[10]$

- Generalized to all $F_{m}^{(n)}\left[c_{1}\right]$ — not a fluke

Q A desingularized finite quotient of a branched multiple cover
$9 .$. and a variety of "general type" ($c_{1}<0$ or even $c_{1} \gtrless 0$)
.there's ∞ of those, just as of VEX polytopes!

Meromorphic March

 ...back to the medial motifQOn $F_{m}^{(n)}: x_{0} y_{0}^{m}+x_{1} y_{1}^{m}=0 ; \operatorname{det}\left[\frac{\partial\left(p(x, y), \mathfrak{B}(x, y), x_{2}, \cdots ; y_{0}, y_{1}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, \cdots ; y_{0}, y_{1}\right)}\right]=$ const. \& $p(x, y)=0$. $Q \mathbb{P}^{n} \times \mathbb{P}^{1}$-degrees \rightarrow Mori vectors - central in family $F_{m ; \epsilon}^{(n)} \in\left[\begin{array}{c||c}\mathbb{P}^{n} & 1 \\ \mathbb{P}^{1} & m\end{array}\right]$

X_{1}^{4}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0 \leftrightarrow \mathbb{p}^{4}$
$-m$	0	0	0	1	$1 \leftrightarrow \mathbb{P}^{1}$

Laurent-Toric Fugue

 (a not-so-new Toric Geometry)A Generalized Construction of
Calabi-Yau Mirror Models
arXiv: $1611.10300+2205.12827$

+ lots more...

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$-2D Proof-of-ConceptQ $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
ϑ Transpolar: functions on which space?
$-\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.^{2} \Theta_{i}\right)$;
甲 Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Q Transpolar: functions on which space?
$-\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
\bullet Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0-\mathrm{p}^{4}$
$-m$	0	0	0	1	$1-\mathrm{p}^{1}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Q Transpolar: functions on which space?

- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
\bullet Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0-\mathrm{p}^{4}$
$-m$	0	0	0	1	$1-\mathrm{p}^{1}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$-2D Proof-of-Concept-
Q $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
9 Transpolar: functions on which space?
$-\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
甲 Compute $\left.\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}\right\}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$-2D Proof-of-Concept-
Q $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Q Transpolar: functions on which space?

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0<\mathbb{p}^{4}$
$-m$	0	0	0	1	$1 \leftarrow \mathbb{P}^{1}$

$-\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.^{2} \Theta_{i}\right)$;
\bullet Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-
Q $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Q Transpolar: functions on which space?

- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.^{\prime} \Theta_{i}\right)$;
- Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

$$
\begin{array}{rlllll}
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} \\
\hline 1 & 1 & 1 & 1 & 0 & 0 \leftrightarrow \mathbb{P}^{4} \\
-m & 0 & 0 & 0 & 1 & 1 \leftrightarrow \mathbb{P}^{1}
\end{array}
$$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-
Q $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Q Transpolar: functions on which space?

- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
- Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\{\nu \text { overlap gluing }+1>0\}^{\bullet}$
- (Re)assemble dtramy chart \#2 local chart \#1 $\left(\theta_{i} \cap \theta_{j}\right)^{\circ}=\left[\theta_{i}^{\circ}, \theta_{j}^{\circ}\right]$ with "neighbors"

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	0
$-m$	0	0	0	1	$1-\mathbb{p}^{4}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=\overline{3}$-2D Proof-of-Concept-
e $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Q Transpolar: functions on which space?

- $\Delta \rightarrow \bigcup_{i}\left(\operatorname{convex}^{\prime} \Theta_{i}\right)$;

甲 Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$
${ }^{\ominus}$ (Re)assemble dually $\left(\theta_{i} \cap \theta_{j}\right)^{\circ}=\left[\theta_{i}^{\circ}, \theta_{j}^{\circ}\right]$ with "neighbors"

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0-\mathrm{p}^{4}$
$-m$	0	0	0	1	$1-\mathrm{p}^{1}$

Laurent-Toric Fugue

Q $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Q Transpolar: functions on which space?

- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
- Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}$
- (Re)assemble dually $\left(\theta_{i} \cap \theta_{j}\right)^{\circ}=\left[\theta_{i}^{\circ}, \theta_{j}^{\circ}\right]$ with "neighbors"

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Q Transpolar: functions on which space?
- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.^{\prime} \Theta_{i}\right)$;
© Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}$
 $\left(\theta_{i} \cap \theta_{j}\right)^{\circ}=\left[\theta_{i}^{\circ}, \theta_{j}^{\circ}\right]$
with "neighbors" $\left(\theta_{i} \cap \theta_{j}\right)^{\circ}=\left[\theta_{i}^{\circ}, \theta_{j}\right.$
with "neighbors"
- Consistent with all standard methods
(pere) complex
algebraic
geometry
 な

 rextex-cones [?
$\left.\nabla F_{3}\right]$

Laurent-Toric Fugue \& Non-Convex Mirrors

Q (Toric) transposition:
$f\left(x ; \Delta_{F_{m}^{(3)}}^{(3)}\right)=a_{1} x_{1}{ }^{3} x_{4}{ }^{2 m+2}+a_{2} x_{1}{ }^{3} x_{5}{ }^{2 m+2}+\underline{a_{3} \frac{x_{2}{ }^{3}}{x_{4}{ }^{m-2}}}+a_{4} \frac{x_{2}{ }^{3}}{x_{5} 5^{m-2}}+\underline{a_{5} \frac{x_{3}{ }^{3}}{x_{4}^{m-2}}}$
$g\left(y ; \Delta_{F_{m}^{\star}}^{(3)}\right)=\underbrace{b_{1} y_{1}^{3} y_{2}{ }^{3}}_{\nu_{1}}+b_{2} \underline{y_{3}^{3}} y_{4}^{3}+b_{3} \underline{y}_{5}^{3} y_{6}^{3}+b_{4} \frac{y_{1}^{2 m+2}}{\left(\underline{y_{3}} y_{5}\right)^{m-2}}+b_{5} \frac{y_{2}^{2 m+2}}{\left(y_{4} y_{6}\right)^{m-2}}$ $\mathbb{E}=\left[\begin{array}{ccccc}3 & 0 & 0 & 2 m+2 & 0 \\ 3 & 0 & 0 & 0 & 2 m+2 \\ 0 & 3 & 0 & 2-m & 0 \\ 0 & 3 & 0 & 0 & 2-m \\ 0 & 0 & 3 & 2-m & 0 \\ 0 & 0 & 3 & 0 & 2-m\end{array}\right]$

Laurent-Tori a somomeme M rose

- (Tonic) $\quad g(y)^{\top}=f(x)=a_{1} x_{1}^{3} x_{4}^{2 m+2}+a_{2} x_{1}^{3} x_{5}^{2 m+2}+\underline{a_{3}} \frac{x_{2}{ }^{3}}{x_{4}^{m-2}}+a_{4} \frac{x_{3}^{3}}{x_{4}{ }^{3-2}}+\underline{a_{5}} \frac{x_{2}{ }^{3}}{x_{5}^{m-2}}+a_{6} \frac{x_{3}^{3}>}{x_{5}^{m-2}}$ trans-
5×6 matrix of exponents $\downarrow_{\text {transpose }}$ position: $f(x)^{\top}=g(y)=b_{1} y_{1}{ }^{3} y_{2}^{3}+b_{2} \underline{y_{3}{ }^{3} y_{4}^{3}+b_{3} \underline{y_{5}^{3}} y_{6}^{3}+b_{4} \frac{y_{1}^{2 m+2}}{\left(\underline{y_{3}} \underline{y_{5}}\right)^{m-2}}+b_{5} \frac{y_{2}^{2 m+2}}{\left(y_{4} y_{6}\right)^{m-2}},{ }^{2}}$
quotient either one of the two by \mathbb{Z}_{3}

$$
\begin{align*}
& x_{1}=1, a_{4}, a_{5}=0 \quad \mathbb{P}_{(3: 3: 1: 1)}^{3}[8] \\
& a_{1} x_{4}^{8}+a_{2} x_{5}^{8}+a_{4} \frac{x_{2}^{3}}{x_{5}}+a_{5} \frac{x_{3}^{3}}{x_{4}} \tag{4}\\
& b_{1}=0, y_{4}, y_{5}=1 \quad \mathbb{P}_{(1: 1: 2: 2)}^{3}[6] \tag{3}
\end{align*}
$$

$b_{2} y_{4}^{3}+b_{3} y_{5}^{3}+b_{4} \frac{y_{1}^{8}}{y_{5}}+b_{5} \frac{y_{2}^{8}}{y_{4}}:$

$$
\begin{aligned}
& x_{1}=1, \underline{a_{3}}, \underline{a_{5}}=0 \quad \mathbb{P}_{\left(3: 3: 11_{3}\right)}^{3}[8]
\end{aligned}
$$

$$
\begin{aligned}
& b_{1}=0, \underline{y_{3}}, \underline{y_{5}}=1 \quad \mathbb{P}_{(3: 5: 8: 8)}^{3}[24]
\end{aligned}
$$

Laurent-Toric Fugue

 \& Non-Convex Mirrors
Q Not just Hirzebruch scrolls, either:
Q Buckets of 2-dimensional polygons, invented to test $\nabla: \Delta^{\star} \stackrel{H}{\longleftrightarrow} \Delta$

Laurent-Toric Fugue \& Non-Convex Mirrors

Q Not just Hirzebruch scrolls, either:

- Buckets of 2-dimensional polygons, invented to test $\nabla: \Delta^{\star} \stackrel{1-1}{\longleftrightarrow} \Delta$

Laurent-Toric Fugue

\& Non-Convex Mirrors

Q Not just Hirzebruch scrolls, either:

- Buckets of 2-dimensional polygons, invented to test $\nabla: \Delta^{\star} \stackrel{1-1}{\longleftrightarrow} \Delta$ - And, plenty of 3-dimensional polyhedra:

Laurent-Toric Fugue \& Non-Convex Mirrors

Q Not just Hirzebruch scrolls, either:

- Buckets of 2-dimensional polygons, invented to test $\nabla: \Delta^{\star} \stackrel{1-1}{\longleftrightarrow} \Delta$ QAnd, plenty of 3-dimensional polyhedra:

Laurent-Toric Fugue \& Non-Convex Mirrors

Q Not just Hirzebruch scrolls, either:

- Buckets of 2-dimensional polygons, invented to test $\nabla: \Delta^{\star} \stackrel{1-1}{\longleftrightarrow} \Delta$

QAnd, plenty of 3-dimensional polyhedra:

Laurent-Toric Fugue \& Non-Convex Mirrors

Q Not just Hirzebruch scrolls, either:

- Buckets of 2-dimensional polygons, invented to test $\nabla: \Delta^{\star} \stackrel{H-1}{\longleftrightarrow} \Delta$ - And, plenty of 3-dimensional polyhedra:
- Re-triangulation \& VEXing:

Laurent-Toric Fugue \& Non-Convex Mirrors

Q Not just Hirzebruch scrolls, either:

- Buckets of 2-dimensional polygons, invented to test $\nabla: \Delta^{\star} \stackrel{H-1}{\longleftrightarrow} \Delta$

Q And, plenty of 3-dimensional polyhedra:

- Re-triangulation \& VEXing:

Q Multiply infinite sequences of twisted polytopes:

Q Not just Hirzebruch scrolls, either:

- Buckets of 2-dimensional polygons, invented to test $\nabla: \Delta^{\star} \stackrel{H-1}{\longleftrightarrow} \Delta$
- And, plenty of 3-dimensional polyhedral:
- Re-triangulation \& VEXing:
- Multiply infinite sequences of twisted polytopes:
- And multi-fans (spanned by multi-topes):

winding number (multiplicity, Duistermaat-Heckman in.) $=2$
[A. Hattori+M. Masuda" Theory of Multi-Fans, Osaka J. Math. 40 (2003) 1-68]

Discriminant Divertimento The Phase-Space $=2$ nd Fan

ϑ The (super)potential: $W(X):=X_{0} \cdot f(X)$,

$$
f(X):=\sum_{j=1}^{2}\left(\sum_{i=2}^{n}\left(a_{i j} X_{i}^{n}\right) X_{n+j}^{2-m}+a_{j} X_{1}^{n} X_{n+j}^{(n-1) m+2}\right)
$$

- The possible vevs

	X_{0}	X_{1}	X_{2}	\cdots	X_{n}	X_{n+1}	X_{n+2}
Q^{1}	$-n$	1	1	\cdots	1	0	0
Q^{2}	$m-2$	$-m$	0	\cdots	0	1	1

	$\left\|x_{0}\right\|$	$\left\|x_{1}\right\|$	$\left\|x_{2}\right\| \cdots\left\|x_{n}\right\|$	$\left\|x_{n+1}\right\|\left\|x_{n+2}\right\|$
i	0	0	\cdots	* *
I	0	*	\ldots	* *
$i i$	0	0	...	0 0
II	0		* ... *	* *
iii	0	$\sqrt{r_{1}}$	$0 \cdots 0$	0 0
III	$\sqrt{\frac{m r_{1}+r_{2}}{(n-1) m+2}}$	$\sqrt{\frac{(m-2) r_{1}+n r_{2}}{(n-1) m+2}}$	$0 \cdots 0$	0 0
iv	$\sqrt{-r_{1} / n}$	0	$0 \cdots$	0 0
IV	$\sqrt{-r_{1} / n}$	0	...	* *

Discimint
 Discriminant Divertimento The Phase-Space $=2$ nd Fan - Proof-of-Concept-

ϱ Varying m in $F_{m}^{(i)}$:

Discriminant Divertimento

The A-Discriminant
Q Now add worldsheet instantons:

- Near $\left(r_{1}, r_{2}\right)=(0,0)$, classical analysis of Kähler (metric) phase-space fails [M\&P: arXiv:hep-th/9412236]

9 With | X_{0} | X_{1} | X_{2} | \cdots | X_{n} | X_{n+1} | X_{n+2} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q^{1} | $-n$ | 1 | 1 | \cdots | 1 | 0 | 0 |
| Q^{2} | $m-2$ | $-m$ | 0 | \cdots | 0 | 1 | 1 |

Q the instanton resummation gives:
$r_{1}+\frac{\hat{\theta}_{1}}{2 \pi i}=-\frac{1}{2 \pi} \log \left(\frac{\sigma_{1}^{n-1}\left(\sigma_{1}-m \sigma_{2}\right)}{\left[(m-2) \sigma_{2}-n \sigma_{1}\right]^{n}}\right)$,
$r_{2}+\frac{\hat{\theta}_{2}}{2 \pi i}=-\frac{1}{2 \pi} \log \left(\frac{\sigma_{2}^{2}\left[(m-2) \sigma_{2}-n \sigma_{1}\right]^{m-2}}{\left(\sigma_{1}-m \sigma_{2}\right)^{m}}\right)$.
a cumulative measure of embedded curves

Discriminant Divertimento

The A-Discriminant
Q Now add worldsheet instantons:
Q Near $\left(r_{1}, r_{2}\right)=(0,0)$, classical analysis of
 Kähler (metric) phase-space fails [M\&P: arXiv:hep-th/9412236]
9 With $X_{0} \left\lvert\, \begin{array}{lllll}X_{1} & X_{2} & \cdots X_{n} X_{n+1} X_{n+2} & \mathrm{~F}_{m}^{(n)}\end{array} \approx_{\mathbb{C}} \mathrm{F}_{m}^{(n)}(\bmod n)\right.$

Q^{1}	$-n$	1	1	\cdots	1	0	0
Q^{2}	$m-2$	$-m$	0	\cdots	0	1	1

9 the instanton resummation gives:
$r_{1}+\frac{\hat{\theta}_{1}}{2 \pi i}=-\frac{1}{2 \pi} \log \left(\frac{\sigma_{1}^{n-1}\left(\sigma_{1}-m \sigma_{2}\right)}{\left[(m-2) \sigma_{2}-n \sigma_{1}\right]^{n}}\right)$,
$r_{2}+\frac{\hat{\theta}_{2}}{2 \pi i}=-\frac{1}{2 \pi} \log \left(\frac{\sigma_{2}^{2}\left[(m-2) \sigma_{2}-n \sigma_{1}\right]^{m-2}}{\left(\sigma_{1}-m \sigma_{2}\right)^{m}}\right)$.
a cumulative measure of embedded curves

Mirror Motets

The A-Discriminant

Q Now compare with the complex structure of the $\mathrm{B}^{3} \mathrm{H}^{2} \mathrm{~K}$-mirror
$@$ Restricted to the "cornerstone" defining polynomials

$$
\begin{aligned}
& f(x)=a_{0} \prod_{\nu_{i} \in \Delta^{\star}}\left(x_{\nu_{i}}\right)^{\left\langle\nu_{i}, \mu_{0}\right\rangle+1}+\sum_{\mu_{I} \in \Delta} a_{\mu_{I}} \prod_{\mu_{I} \in \Delta}\left(x_{\nu_{i}}\right)^{\left\langle\nu_{i}, \mu_{I}\right\rangle+1} \\
& g(y)=b_{0} \prod_{\nu_{i} \in \Delta^{\star}}\left(y_{\mu_{I}}\right)^{\left\langle\mu_{I}, \nu_{0}\right\rangle+1}+\sum_{\nu_{i} \in \Delta^{\star}} b_{\nu_{\nu_{i}}} \prod_{\mu_{I} \in \Delta}\left(y_{\mu_{I}}{ }^{\left\langle\mu_{1} s \mu_{I}, \nu_{i}\right\rangle+1}\right.
\end{aligned}
$$

Q In particular,

$$
\begin{aligned}
g(y) & =\sum_{i=0}^{n+2} b_{i} \phi_{i}(y)=b_{0} \phi_{0}+b_{1} \phi_{1}+b_{2} \phi_{2}+b_{3} \phi_{3}+b_{4} \phi_{4}, \\
\phi_{0} & :=y_{1} \cdots y_{4}, \quad \phi_{1}:=y_{1}^{2} y_{2}^{2}, \quad \phi_{2}:=y_{3}^{2} y_{4}^{2}, \quad \phi_{3}:=\frac{y_{1}^{m+2}}{y_{3}^{m-2}}, \quad \phi_{4}:=\frac{y_{2}^{m+2}}{y_{4}^{m-2}}, \\
z_{1} & =-\frac{\beta[(m-2) \beta+m]}{m+2}, \quad z_{2}=\frac{(2 \beta+1)^{2}}{(m+2)^{2} \beta^{m}}, \quad \beta:=\left[\frac{b_{1} \phi_{1}}{b_{0} \phi_{0}} /{ }^{A} \mathscr{J}(g)\right],
\end{aligned}
$$

Mirror Motets

The A-Discriminant
Q Now compare with the complex structure of the $\mathrm{B}^{3} \mathrm{H}^{2} \mathrm{~K}$-mirror
Q Restricted to the "cornerstone" defining polynomials

$$
\begin{aligned}
& f(x)=a_{0} \prod_{\nu_{i} \in \Delta^{\star}}\left(x_{\nu_{i}}\right)^{\left\langle\nu_{i}, \mu_{0}\right\rangle+1}+\sum_{\mu_{I} \in \Delta} a_{\mu_{I}} \prod_{\nu_{i} \in \Delta^{\star}}\left(x_{\nu_{i}}\right)^{\left\langle\nu_{i}, \mu_{I}\right\rangle+1} \\
& g(y)=b_{0} \prod_{\mu_{I} \in \Delta}\left(y_{\mu_{I}}\right)^{\left\langle\mu_{I}, \nu_{0}\right\rangle+1}+\sum_{\nu_{i} \in \Delta^{\star}} b_{\nu_{i}} \prod_{\mu_{I} \in \Delta}\left(y_{\mu_{I}}\right)^{\left\langle\mu_{I}, \nu_{i}\right\rangle+1}
\end{aligned}
$$

- In particular,

$$
\begin{aligned}
g(y) & =\sum_{i=0}^{n+2} b_{i} \phi_{i}(y)=b_{0} \phi_{0}+b_{1} \phi_{1}+b_{2} \phi_{2}+b_{3} \phi_{3}+b_{4} \phi_{4}, \\
\phi_{0} & :=y_{1} \cdots y_{4}, \quad \phi_{1}:=y_{1}^{2} y_{2}^{2}, \quad \phi_{2}:=y_{3}^{2} y_{4}^{2}, \quad \phi_{3}:=\frac{y_{1}^{m+2}}{y_{3}^{m-2}}, \quad \phi_{4}:=\frac{y_{2}^{m+2}}{y_{4}^{m-2}}, \\
z_{1} & =-\frac{\beta[(m-2) \beta+m]}{m+2}, \quad z_{2}=\frac{(2 \beta+1)^{2}}{(m+2)^{2} \beta^{m}}, \quad \beta:=\left[\frac{b_{1} \phi_{1}}{b_{0} \phi_{0}}{ }^{A} \mathscr{J}(g)\right]^{\prime},
\end{aligned}
$$

Mirror Motets

The A-Discriminant

—Proof-of-Concept-
© So: $\mathscr{M}\left({ }^{\nabla} F_{m}^{(n)}\left[c_{1}\right]\right) \stackrel{\mathrm{mm}}{\approx} \mathscr{W}\left(F_{m}^{(n)}\left[c_{1}\right]\right)$ - easy: 2-dimensional
Q In fact, also: $\mathscr{W}\left({ }^{\nabla} F_{m}^{(n)}\left[c_{1}\right]\right) \stackrel{\mathrm{mm}}{\approx} \mathscr{M}\left(F_{m}^{(n)}\left[c_{1}\right]\right)$
『...restricted to no (МРСР) blow-ups; only "cornerstone" polynomials
Q Then, $\quad \operatorname{dim} \mathscr{W}\left({ }^{\nabla} F_{m}^{(n)}\left[c_{1}\right]\right)=n=\operatorname{dim} \mathscr{M}\left(F_{m}^{(n)}\left[c_{1}\right]\right)$
Q Same methods:

$$
\begin{aligned}
e^{2 \pi i \widetilde{\tau}_{\alpha}} & =\prod_{I=0}^{2 n}\left(\sum_{\beta=1}^{2} \widetilde{Q}_{I}^{\beta} \widetilde{\sigma}_{\beta}\right)^{\widetilde{Q}_{I}^{\alpha}} \\
\tilde{z}_{a} & =\prod_{I=0}^{2 n}\left(a_{I} \varphi_{I}(x)\right)^{\widetilde{Q}_{I}^{\alpha}} / A \mathscr{J}
\end{aligned}
$$

| ${ }_{I}$ | $\left(\sum_{\beta} \widetilde{Q}_{I}^{\beta} \widetilde{\sigma}_{\beta}\right)$ | $n \neq 4\left(a_{I} \varphi_{I}\right) /{ }^{A} \mathscr{J}_{(210)}(f)$ |
| :---: | :---: | :---: | :---: |
| 0 | $-2(m+2)\left(\widetilde{\sigma}_{1}+\widetilde{\sigma}_{2}\right)$ | $-2\left(\left(a_{3} \varphi_{3}\right)+\left(a_{4} \varphi_{4}\right)\right)$ |
| 1 | $m \widetilde{\sigma}_{1}+2 \widetilde{\sigma}_{2}$ | $\frac{m\left(a_{3} \varphi_{3}\right)+2\left(a_{4} \varphi_{4}\right)}{m+2}$ |
| 2 | $2 \widetilde{\sigma}_{1}+m \widetilde{\sigma}_{2}$ | $\frac{2\left(a_{3} \varphi_{3}\right)+m\left(a_{4} \varphi_{4}\right)}{m+2}$ |
| 3 | $(m+2) \widetilde{\sigma}_{1} \simeq=$ | $\left(a_{3} \varphi_{3}\right)$ |
| 4 | $(m+2) \widetilde{\sigma}_{2}$ | $\left(a_{4} \varphi_{4}\right)$ |

Mirror Motets

The A-Discriminant

© So: $\mathscr{M}\left({ }^{\nabla} F_{m}^{(n)}\left[c_{1}\right]\right) \stackrel{\mathrm{mm}}{\approx} \mathscr{W}\left(F_{m}^{(n)}\left[c_{1}\right]\right)$ - easy: 2-dimensional
Q In fact, also: $\mathscr{W}\left({ }^{\nabla} F_{m}^{(n)}\left[c_{1}\right]\right) \stackrel{\mathrm{mm}}{\approx} \mathscr{M}\left(F_{m}^{(n)}\left[c_{1}\right]\right)$
V...restricted to no (МРСР) blow-ups; only "cornerstone" polynomials
ϑ Then, $\quad \operatorname{dim} \mathscr{W}\left({ }^{\nabla} F_{m}^{(n)}\left[c_{1}\right]\right)=n=\operatorname{dim} \mathscr{M}\left(F_{m}^{(n)}\left[c_{1}\right]\right)$
Q Same methods:

$$
\begin{aligned}
e^{2 \pi i \widetilde{\tau}_{\alpha}} & =\prod_{I=0}^{2 n}\left(\sum_{\beta=1}^{2} \widetilde{Q}_{I}^{\beta} \widetilde{\sigma}_{\beta}\right)^{\widetilde{Q}_{I}^{\alpha}} \\
\tilde{z}_{a} & =\prod_{I=0}^{2 n}\left(a_{I} \varphi_{I}(x)\right)^{\widetilde{Q}_{I}^{\alpha}} /{ }^{A} \mathscr{J}
\end{aligned}
$$

Kähler		complex structure
${ }_{I}$	$\left(\sum_{\beta} \widetilde{Q}_{I}^{\beta} \widetilde{\sigma}_{\beta}\right)$	$n \neq 4\left(a_{I} \varphi_{I}\right) /^{A} \mathscr{J}_{(210)}(f)$
0	$-2(m+2)\left(\widetilde{\sigma}_{1}+\widetilde{\sigma}_{2}\right)$	$-2\left(\left(a_{3} \varphi_{3}\right)+\left(a_{4} \varphi_{4}\right)\right)$
1	$m \widetilde{\sigma}_{1}+2 \widetilde{\sigma}_{2}$	$\frac{m\left(a_{3} \varphi_{3}\right)+2\left(a_{4} \varphi_{4}\right)}{m+2}$
2	$2 \widetilde{\sigma}_{1}+m \widetilde{\sigma}_{2}$	$\frac{2\left(a_{3} \varphi_{3}\right)+m\left(a_{4} \varphi_{4}\right)}{m+2}$
3	$(m+2) \widetilde{\sigma}_{1}$	$\left(a_{3} \varphi_{3}\right)$
4	$(m+2) \widetilde{\sigma}_{2}$	$\left(a_{4} \varphi_{4}\right)$

Laurent GLSM Coda

Summary

e CY($n-1$)-folds in Hirzebruch n-folds

- Euler characteristic ∇
- Chern class, term-by-term ∇
- Hodge numbers $\sqrt{\text { V (jump @ \# }}$)
- Cornerstone polynomials \& mirror
\bullet Phase-space regions \& mirror ∇
- Phase-space discriminant \& mirror
- The "other way around" (limited!)
ϱ Yukawa couplings

\ominus World-sheet instantons

- Gromov-Witten invariants soon? $\underset{\text { s }}{ }$
- Will there be anything else? ...being ML-datamined $d\left(\theta^{(k)}\right):=k!\operatorname{Vol}\left(\theta^{(k)}\right)$ [BH: signed by orientation!]

Laurent GLSM Coda

Summary

- CY($n-1$)-folds in Hirzebruch n-folds \checkmark regular defo $\xrightarrow{\epsilon \rightarrow 0}$ Laurent defo

$\epsilon_{a \ell}$-space
- Oriented polytopes
str. $\left.{ }^{+}\right)^{1}$
ks to be xtended

