Bernstein-Kouchnirenko-Khovanskii with a symmetry

Alexander Esterov (LIMS) Nottingham AG seminar June 2023

Prequel: the classics

a₂

 $\mapsto x_1^{a_1} x_2^{a_2} =: x^a$

$$A, B \subset \mathbb{Z}^n \mapsto \text{systems of equations } f = g = 0 \text{ supported at } A, B$$

Kouchnirenko-Bernstein formula: $f_1 = \cdots = f_n = 0$ is a generic system supported at $A_1, \dots, A_n \subset \mathbb{Z}^n \implies$ the number of its solutions in $(\mathbb{C} \setminus 0)^n$ equals the mixed volume of A_1, \dots, A_n

 $A + B \coloneqq \{a + b \mid a \in A, b \in B\}$

- - - - - 0 - 0 = 1 **BKK toolkit**: f = g = 0 is a generic system supported at $A, B \subset \mathbb{Z}^3 \Rightarrow$ 1) f = g = 0 defines a smooth curve in $(\mathbb{C} \setminus 0)^3$ 2) $e(f = g = 0) = -(A + B) \cdot A \cdot B$ 3) The genus, the tropical fan, \cdots 4) The curve is irreducible unless: a. $f(x_1) = g(x_1, x_2, x_3) = 0$ b. $f(x_1, x_2) = g(x_1, x_2) = 0$ Х, Chapter 1: the symmetry 64 The involution $I: \mathbb{Z}^3 \to \mathbb{Z}^3$, $I(u, v, w) \coloneqq (v, u, w)$ The diagonal plane $D \subset \mathbb{Z}^3$ and the fixed line $L \subset \mathbb{Z}^3$ U Same in the algebraic torus: $I: (\mathbb{C}\setminus 0)^3 \to (\mathbb{C}\setminus 0)^3 \supset D$ The symmetric curve *C*: f(x) = f(Ix) = 0 for generic f supported at $A \subset \mathbb{Z}^3$

- BKK Toolkit for it?
- Higher dimensions & symmetries?
- What for?

C is never irreducible: it has a diagonal component $C \cap D = \{f(x_1, x_2, x_3) = f(x_2, x_1, x_3) = 0, x_1 = x_2\}$

This is planar: lies in $D \simeq (\mathbb{C} \setminus 0)^2$, so covered by the classical BKK.

X

Other diagonal components: $\{f = 0, x_1 = \sqrt[d]{1} \cdot x_2\}$ where $d = |\mathbb{Z}^3/(D + A + IA)|$

The rest of C is its proper part C_P

Theorem: 1. C_P is smooth.

2. It intersects transversally every diagonal component at $A/L \cdot A(L - \sum_{H \mid \mid D} (A/L - (A \setminus H)/L))$ oints.

3. $e(C_P) = \# - (A + IA) A (\cdot IA - \sum_{H \mid \mid D} (\cdot IA - (A \setminus H) \cdot I(A \setminus H))$

4. The genus, the tropical fan, ...

Have you seen expressions like this?
Simple to write, difficult to count
No blinders - no sums

₽

5. *C_P* is irreducible except for the following *A*:

Proof: difficult Conjecture: easy

The proper part has more than one component)

The proper part is locally planar

Chapter 2: generalities and applications

A finite group G acts on \mathbb{Z}^n , $(\mathbb{C}\setminus 0)^n$, $\{\pm 1\}$ and $\{1, \dots, k\}$.

Finite sets $A_1, ..., A_k \in \mathbb{Z}^n$ satisfy $A_{gi} = gA_i$ for $g \in G$.

Polynomials f_i supported at A_i & generic modulo $f_{gi} = (-1)^g f_i \circ g$.

Study the complete intersection $f_1 = \cdots = f_k = 0$ in $(\mathbb{C} \setminus 0)^n$.

Interesting special cases

Self-intersections of an algebraic knot link $\{f_1 = f_2 = 0\} \subset (\mathbb{C} \setminus 0)^3 \rightarrow (\mathbb{C} \setminus 0)^2$, how many self-intersectoins? $f_1(x, y, z) = f_1(x, y, z') = f_2(x, y, z) = f_2(x, y, z') = 0$

Affine multiple point formulas $f = (f_1, f_2, f_3): (\mathbb{C}\setminus 0)^2 \to \mathbb{C}^3$, how many 3-points f(x) = f(y) = f(z)?

- Voorhaar'19

Irreducibility of Schur polynomials

X X X X y a y b y c t

- Dvornicich, Zannier'09 - Applications in representation theory (unique factorization of representations of GL)

Ð

Transitivity of monodromy: $\{f = 0\} \subset (\mathbb{C}\setminus 0)^2$ is irreducible \Leftrightarrow monodromy of $\{f = 0\} \rightarrow (\mathbb{C}\setminus 0)^1$, $(x, y) \mapsto x$, is transitive

A group $G \subset S_k$ is 2-transitive if $\forall (i, j)$ is sent to $\forall (i', j')$ with $g \in G$. monodromy of $\{f = 0\} \rightarrow (\mathbb{C} \setminus 0)^1, (x, y) \mapsto x$, is 2-transitive \Leftrightarrow

Why: the Galois group of the covering $(x, t) \mapsto t$ is full symmetric, UNLESS $A_i = \{\alpha + \beta a_i\}$

Why: it contains a transposition and is 2-transitive UNLESS $A_i = \{\alpha + \beta a_i\} \Rightarrow$ contains all transpositions

SUPPORT OF F

Thank you!