Bernstein-Kouchnirenko-Khovanskii with a symmetry

Prequel: the classics

$$
\mapsto x_{1}^{a_{1}} x_{2}^{a_{2}}=: x^{a}
$$

$\mapsto \alpha \cdot x_{1}+\beta \cdot x_{2}+\gamma \cdot x_{1}^{-1} x_{2}^{-1}=0$
a polynomial supported at A
$A, B \subset \mathbb{Z}^{n} \mapsto$ systems of equations $f=g=0$ supported at A, B

Kouchnirenko-Bernstein formula:
$f_{1}=\cdots=f_{n}=0$ is a generic system supported at $A_{1}, \ldots, A_{n} \subset \mathbb{Z}^{n} \Rightarrow$ the number of its solutions in $(\mathbb{C} \backslash 0)^{\mathrm{n}}$
 equals the mixed volume of A_{1}, \ldots, A_{n}

Minkowski sum

$A+B:=\{a+b \mid a \in A, b \in B\}$

Mixed volume
$A_{1} \cdot \ldots \cdot A_{n}:=\sum_{i_{1}<\cdots<i_{q}}(-1)^{n-q} \operatorname{Vol}\left(A_{i_{1}}+\cdots+A_{i_{q}}\right)$
$1-==\square-1-\infty=1-0-0=1$
BKK toolkit: $f=g=0$ is a generic system supported at $A, B \subset \mathbb{Z}^{3} \Rightarrow$

1) $f=g=0$ defines a smooth curve in $(\mathbb{C} \backslash 0)^{3}$
2) $e(f=g=0)=-(A+B) \cdot A \cdot B$
3) The genus, the tropical fan, \cdots

4) The curve is irreducible unless:
a. $f\left(x_{1}\right)=g\left(x_{1}, x_{2}, x_{3}\right)=0$
b. $f\left(x_{1}, x_{2}\right)=g\left(x_{1}, x_{2}\right)=0$

Chapter 1: the symmetry

The involution $I: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}, I(u, v, w):=(v, u, w)$

Same in the algebraic torus: $I:(\mathbb{C} \backslash 0)^{3} \rightarrow(\mathbb{C} \backslash 0)^{3} \supset D$
The symmetric curve C :
$f(x)=f(I x)=0$ for generic f supported at $A \subset \mathbb{Z}^{3}$

- BKK Toolkit for it?
- Higher dimensions \& symmetries?
- What for?

C is never irreducible: it has a diagonal component
$C \cap D=\left\{f\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{2}, x_{1}, x_{3}\right)=0, x_{1}=x_{2}\right\}$
This is planar: lies in $D \simeq(\mathbb{C} \backslash 0)^{2}$, so covered by the classical BKK.

Other diagonal components: $\left\{f=0, x_{1}=\sqrt[d]{1} \cdot x_{2}\right\}$ where $d=\left|\mathbb{Z}^{3} /(D+A+I A)\right|$

The rest of C is its proper part C_{P}
Theorem: 1. C_{P} is smooth.

2. It intersects transversally every diagonal component at $A / L \cdot A\left(/ L-\sum_{H \| D}(A / L-(A \backslash H) / L)\right.$) oinks.
3. $e\left(C_{P}\right)=\#-(A+I A) \cdot A\left(\cdot I A-\sum_{H \| A} A(\cdot I A-(A \backslash H) \cdot I(A \backslash H))\right.$
4. The genus, the tropical fan, ...
5. C_{P} is irreducible except for the following A :

Example: $f\left(x_{1}, x_{2}, x_{3}\right)=g\left(x_{1} \cdot x_{2}, x_{3}\right)+x_{1} \cdot h\left(x_{1} \cdot x_{2}, x_{3}\right)$
$f\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{2}, x_{1}, x_{3}\right)=0 \Leftrightarrow\left(x_{1}-x_{2}\right) \cdot g=\left(x_{1}-x_{2}\right) \cdot h=0$
Proof: difficult
Conjecture: easy

The proper part has more than one component

The proper part is locally planar

Chapter 2: generalities and applications

A finite group G acts on $\mathbb{Z}^{n},(\mathbb{C} \backslash 0)^{n},\{ \pm 1\}$ and $\{1, \ldots, k\}$.
Finite sets $A_{1}, \ldots, A_{k} \in \mathbb{Z}^{n}$ satisfy $A_{g i}=g A_{i}$ for $g \in G$.
Polynomials f_{i} supported at A_{i} \& generic modulo $f_{g i}=(-1)^{g} f_{i} \circ g$.
Study the complete intersection $f_{1}=\cdots=f_{k}=0$ in $(\mathbb{C} \backslash 0)^{n}$.
Interesting special cases
Self-intersections of an algebraic knot link
4

$\left\{f_{1}=f_{2}=0\right\} \subset(\mathbb{C} \backslash 0)^{3} \rightarrow(\mathbb{C} \backslash 0)^{2}$, how many self-intersectoins?
$f_{1}(x, y, z)=f_{1}\left(x, y, z^{\prime}\right)=f_{2}(x, y, z)=f_{2}\left(x, y, z^{\prime}\right)=0$ ฉ
Affine multiple point formulas
$f=\left(f_{1}, f_{2}, f_{3}\right):(\mathbb{C} \backslash 0)^{2} \rightarrow \mathbb{C}^{3}$, how many 3-points $f(x)=f(y)=f(z)$?
Irreducibility of Schur polynomials

- Dvornicich, Zannier'09
- Applications in representation theory (unique factorization of representations of GL)

Transitivity of monodromy: $\{\mathrm{f}=0\} \subset(\mathbb{C} \backslash 0)^{2}$ is irreducible \Leftrightarrow monodromy of $\{f=0\} \rightarrow(\mathbb{C} \backslash 0)^{1},(x, y) \mapsto x$, is transitive

A group $G \subset S_{k}$ is 2-transitive if $\forall(i, j)$ is sent to $\forall\left(i^{\prime}, j^{\prime}\right)$ with $g \in G$.
monodromy of $\{f=0\} \rightarrow(\mathbb{C} \backslash 0)^{1},(x, y) \mapsto x$, is 2-transitive \Leftrightarrow
the fiber square $\left\{f(x, y)=f\left(x^{\prime}, y\right)=0\right\} \subset(\mathbb{C} \backslash 0)^{3}$ is irreducible

$$
\begin{aligned}
& c_{1} x+c_{0}=0 \Rightarrow x=-c_{0} / c_{1} \\
& c_{2} x^{2}+c_{1} x+c_{0}=0 \Rightarrow x=\frac{-c_{1} \pm \sqrt{c_{1}^{2}-4 c_{0} c_{2}}}{c_{2}} \\
& c_{3} x^{3}+\cdots=0 \Rightarrow \\
& c_{4} x^{4}+\cdots=0 \Rightarrow \cdots
\end{aligned}
$$

$c_{5} x^{5}+\cdots=0 \Rightarrow$ NO formula by radicals. But:

$$
p x^{2}+q x^{12}+r x^{22} \mapsto \sim x_{0}^{0}+q x^{10}+r x^{20} \mapsto p+q y+r y^{2}
$$

Theorem: given several monomials $A \subset \mathbb{Z}$, assume wog that A starts at 0 and generates \mathbb{Z}.
Then the general equation supported at A is solvable of max $A \leq 4$:

$$
c_{0}+c_{1} x^{a_{1}}+\cdots+c_{q} x^{a_{q}}=0
$$

Specialization: consider $c_{0}(t)+c_{1}(t) x^{a_{1}}+\cdots+c_{q}(t) x^{a_{q}}=0$, where $c_{i}(t)$ is a generic polynomial supported at $A_{i} \subset \mathbb{Z}$.
Its solutions $x=x(t)$ can be expressed by radicals
Iff $\max A \leq 4$ OR $A_{i}=\left\{\alpha+\beta a_{i}\right\}$:

Why: the Galois group of the covering $(x, t) \mapsto t$ is full symmetric, $\operatorname{UNLESS} A_{i}=\left\{\alpha+\beta a_{i}\right\}$

Why: it contains a transposition and is 2-transitive UNLESS $A_{i}=\left\{\alpha+\beta a_{i}\right\} \Rightarrow$ contains all transpositions

Thank you!

