Gauss Manin Connection in Disguise and Mirror Symmetry

Modular-type functions for open-string Mirror Symmetry on
the quintic

Felipe Espreafico Guelerman Ramos

Instituto de Matemática Pura e Aplicada - IMPA Nottingham Online Algebraic Geometry Seminar

August 11, 2022

Outline

(1) The GMCD project

- What is GMCD?
- Example of Elliptic Curves
(2) Closed String case
- Mirror Quintics and their Moduli Space
- Picard-Fuchs equation and the Gauss Manin connection
- The Ramanujan Vector Field
(3) Open String case
- Mixed Hodge Structure and Gauss Manin connection
- Moduli Space
- Picard-Fuchs and Ramanujan Vector Field

4. Relationship with Mirror Symmetry

- Periods
- The Mirror Map and the functions F and Y

What is GMCD?

GMCD or Gauss Manin Connection in Disguise is a program which has the goal to generalize the concept of modular forms.

Basic idea:

- Consider the (quasi-affine) moduli space of n-dimensional varieties enhanced with a basis for its n-th algebraic de Rham cohomology and take coordinates for it;

What is GMCD?

GMCD or Gauss Manin Connection in Disguise is a program which has the goal to generalize the concept of modular forms.

Basic idea:

- Consider the (quasi-affine) moduli space of n-dimensional varieties enhanced with a basis for its n-th algebraic de Rham cohomology and take coordinates for it;
- Compute the Gauss Manin connection of this family w.r.t this basis;
- Find the modular vector field, which gives differential relations among the coordinates. This vector field, when integrated, will also give rise to a modular domain.

What is GMCD?

GMCD or Gauss Manin Connection in Disguise is a program which has the goal to generalize the concept of modular forms.

Basic idea:

- Consider the (quasi-affine) moduli space of n-dimensional varieties enhanced with a basis for its n-th algebraic de Rham cohomology and take coordinates for it;
- Compute the Gauss Manin connection of this family w.r.t this basis;
- Find the modular vector field, which gives differential relations among the coordinates. This vector field, when integrated, will also give rise to a modular domain.

Example: Elliptic Curves

Example: Elliptic Curves

Example: Elliptic Curves

What is a Mirror Quintic?

Consider the family of quintics in \mathbb{P}^{4} given by:

$$
x_{\psi}: x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}-5 \psi x_{0} x_{1} x_{2} x_{3} x_{4}=0, \quad \psi^{5} \neq 1
$$

Let G be the group

$$
\begin{equation*}
G=\left\{\left(a_{0}, \ldots, a_{4}\right) \in \mathbb{Z}_{5}^{5}: \sum_{i} a_{i} \equiv 0 \bmod 5\right\} / \mathbb{Z}_{5} \tag{1}
\end{equation*}
$$

which acts on \mathbb{P}^{4} by

$$
\left(a_{0}, \ldots, a_{4}\right) \bullet\left[x_{0}, \ldots, x_{4}\right] \mapsto\left[\mu^{a_{0}} x_{0}: \ldots \mu^{a_{4}} x_{4}\right],
$$

The mirror quintic family is the family of resolutions of the singularities of each quotient X_{ψ} / G.

Moduli Space

An enhanced Mirror Quintic is a pair ($X,\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right]$), where the α 's are a basis for $H_{d R}^{3}(X)$ satisfying

$$
\begin{aligned}
& \alpha_{i} \in F^{4-i} / F^{5-i}, \quad i \in\{1,2,3,4\} \\
& {\left[\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right]=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) .}
\end{aligned}
$$

In the above, F represents the Hodge filtration.

The GMCD project
Closed String case
Open String case
Relationship with Mirror Symmetry

Moduli Space

Theorem (Movasati, 2015)

Enhanced mirror quintics can be parametrized by the affine open set

$$
T \cong\left\{\left(t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right) \in \mathbb{C}^{7} \mid t_{5} t_{4}\left(t_{4}-t_{0}^{5}\right) \neq 0\right\}
$$

Moduli Space

Write the equation of X as

$$
-t_{4} x_{0}^{5}-x_{1}^{5}-\cdots-x_{4}^{5}+5 t_{0} x_{0} \ldots x_{4}=0
$$

and fix ω_{1} as a holomorphic form (notice that pairs (X, ω)) form a dimension two space.
Consider a basis $\Omega:=\left[\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right]$ of the de Rham cohomology, where $\omega_{i}=\frac{\partial}{\partial t_{0}} \omega_{i-1}$ and ω_{1} is a holomorphic 3-form.

Any basis satisfying the two properties can be obtained from Ω via multiplication by a matrix. The independent coefficients of this matrix are the coordinates t_{i} associated to this basis.

Picard Fuchs Equation

Let $z:=\psi^{-5}=\frac{t_{4}}{t_{0}^{5}}$. Candelas et al showed that the solutions of the Picard-Fuchs differential equation

$$
\begin{aligned}
\mathcal{L} \varpi_{0}=\left[\frac{d^{4}}{d z^{4}}-\right. & \frac{2(4 z-3)}{z(1-z)} \frac{d^{3}}{d z^{3}}-\frac{(72 z-35)}{5 z^{2}(1-z)} \frac{d^{2}}{d z^{2}} \\
& \left.-\frac{(24 z-5)}{5 z^{3}(1-z)} \frac{d}{d z}-\frac{24}{625 z^{3}(1-z)}\right] \varpi_{0}=0
\end{aligned}
$$

are periods of the mirror quintic (integrals of ω_{1}).
This equation will help us to compute the Gauss Manin connection in the basis $\left[\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right]$.

Ramanujan Vector Field

Theorem (Movasati, 2015)

There is a unique vector field \mathbf{R} in T such the Gauss-Manin connection composed with the vector field \mathbf{R} satisfies

$$
\begin{aligned}
\nabla_{\mathbf{R}}\left(\alpha_{1}\right) & =\alpha_{2} ; \\
\nabla_{\mathbf{R}}\left(\alpha_{2}\right) & =Y \alpha_{3} ; \\
\nabla_{\mathbf{R}}\left(\alpha_{3}\right) & =-\alpha_{4} ; \\
\nabla_{\mathbf{R}}\left(\alpha_{4}\right) & =0 ;
\end{aligned}
$$

for some regular function Y in T.

Ramanujan Vector Field

The vector field is given, as a differential equation, by

$$
\mathbf{R}:\left\{\begin{array}{l}
\dot{t}_{0}=\frac{1}{t_{5}}\left(6 \cdot 5^{4} t_{0}^{5}+t_{0} t_{3}-5^{4} t_{4}\right) \\
\dot{t}_{1}=\frac{t_{5}}{t_{5}}\left(-5^{8} t_{0}^{6}+5^{5} t_{0}^{4} t_{1}+5^{8} t_{0} t_{4}+t_{1} t_{3}\right) \\
\dot{t}_{2}=\frac{1}{t_{5}}\left(-3 \cdot 5^{9} t_{0}^{7}-5^{4} t_{0}^{5} t_{1}+2 \cdot 5^{5} t_{0}^{4} t_{2}+3 \cdot 5^{9} t_{0}^{2} t_{4}+5^{4} t_{1} t_{4}+2 t_{2} t_{3}\right) \\
\dot{t}_{3}=\frac{1}{t_{5}}\left(-5^{10} t_{0}^{8}-5^{4} t_{0}^{5} t_{2}+3 \cdot 5^{5} t_{0}^{4} t_{3}+5^{10} t_{0}^{3} t_{4}+5^{4} t_{2} t_{4}+3 t_{3}^{2}\right) \\
\dot{t}_{4}=\frac{1}{t_{5}}\left(5^{6} t_{0}^{4} t_{4}+5 t_{3} t_{4}\right) \\
\dot{t}_{5}=\frac{1}{t_{5}}\left(-5^{4} t_{0}^{5} t_{6}+3 \cdot 5^{5} t_{0}^{4} t_{5}+2 t_{3} t_{5}+5^{4} t_{4} t_{6}\right) \\
\dot{t}_{6}=\frac{1}{t_{5}}\left(3 \cdot 5^{5} t_{0}^{4} t_{6}-5^{5} t_{0}^{3} t_{5}-2 t_{2} t_{5}+3 t_{3} t_{6}\right)
\end{array}\right.
$$

and the regular function Y is given by

$$
Y=\frac{5^{8}\left(t_{0}^{5}-t_{4}\right)^{2}}{t_{5}^{3}}
$$

Gromov Witten invariants and Periods

We can solve the equation considering a coordinate q and a derivation $5 q \frac{d}{d q}$, we can find functions that work as modular forms.
If we compute such a q-expansion for Y, we get, up to a constant, the number n_{d} of rational curves of degree d on a generic quintic threefold, as computed by Candelas et al.

$$
\left(5+2875 \frac{q}{1-q}+609250 \cdot 2^{3} \frac{q^{2}}{1-q^{2}}+\cdots+n_{d} d^{3} \frac{q^{d}}{1-q^{d}}+\cdots\right)
$$

This relationship is better explained by periods, as in the Elliptic Curve case. We will come back to this in the end of the lecture.

What is different in the open case?

Instead of counting rational curves on the quintic, we want to count disks with boundary on a Lagrangian in the quintic. For this, we need to consider a pair of conics in the mirror, as below:

$$
C_{ \pm}=\left\{x_{0}+x_{1}=0, x_{2}+x_{3}=0, x_{4}^{2} \pm \sqrt{5 \psi} x_{1} x_{3}=0\right\} \subset X_{\psi}
$$

After the quotient by the action of the group G and the resolution of singularities, this curves may be considered as curves on the mirror quintic.

Relative Algebraic de Rham cohomology

In this context, we need to deal not with the absolute algebraic de Rham cohomology $H_{d R}^{3}(X)$ but with the relative algebraic de Rham cohomology $H_{d R}^{3}\left(X, C_{+} \cup C_{-}\right)$.

Mixed Hodge Structure and Gauss Manin Connection

Instead of a usual Hodge structure as we have on the absolute cohomology, we have a mixed Hodge structure. Also, we have to define a relative version of the Gauss Manin connection.

Mixed Hodge Structure and Gauss Manin Connection

Relatively Enhanced Mirror Quintics

An relatively enhanced Mirror Quintic is a triple

$$
\left(X, \boldsymbol{C}_{ \pm},\left[\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right]\right)
$$

where the α 's are a basis for $H_{d R}^{3}\left(X, C_{ \pm}\right)$satisfying
(1) $\alpha_{i} \in F^{4-i} \backslash F^{5-i}, \quad i=1,2,3,4$
(2) $\alpha_{i} \in W_{3} \backslash W_{2}, \quad i=1,2,3,4$.
(3) $\alpha_{0} \in F^{1} \backslash F^{2}$
(4) $\alpha_{0} \in W_{2}$
(5) $\left[\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right]=\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0\end{array}\right]$
(6) $\int_{\delta_{0}} \omega_{0}=1$

Moduli Space

Theorem (F.E.)

Relatively enhanced mirror quintics can be parametrized by the affine open set

$$
S \cong\left\{\left(s_{0}, s_{1}, \ldots, s_{7}, s_{8}\right) \in \mathbb{C}^{9} \mid s_{0} s_{5} s_{4}\left(s_{4}^{10}-s_{0}^{10}\right) \neq 0\right\}
$$

Picard-Fuchs Equation

Walcher and his collaborators showed that the extra period that appears in our case is a solution of the differential equation

$$
\mathcal{L} \varpi=\frac{-15 \sqrt{z}}{8 z^{4}(z-1)}
$$

We can repeat the process of the absolute cohomology to compute the Gauss Manin connection.

The GMCD project
Closed String case Open String case Relationship with Mirror Symmetry

Ramanujan Vector Field

Theorem (F.E.)

There is a unique vector field \mathbf{R} in S such the Gauss-Manin connection composed with the vector field \mathbf{R} satisfies

$$
\begin{aligned}
& \nabla_{\mathbf{R}}\left(\alpha_{0}\right)=0 ; \\
& \nabla_{\mathbf{R}}\left(\alpha_{1}\right)=\alpha_{2} ; \\
& \nabla_{\mathbf{R}}\left(\alpha_{2}\right)=F \alpha_{0}+Y \alpha_{3} ; \\
& \nabla_{\mathbf{R}}\left(\alpha_{3}\right)=-\alpha_{4} ; \\
& \nabla_{\mathbf{R}}\left(\alpha_{4}\right)=0 ;
\end{aligned}
$$

for some regular functions F and Y in S.

The GMCD project
Closed String case
Open String case Relationship with Mirror Symmetry

Picard-Fuchs and Ramanujan Vector Field

Ramanujan Vector Field

The vector field is given, as a differential equation, by

$$
\mathbf{R}:\left\{\begin{array}{l}
\dot{s}_{0}=\frac{1}{2 s_{0} s_{5}}\left(6 \cdot 5^{4} s_{0}^{10}+s_{0}^{2} s_{3}-5^{4} s_{4}^{10}\right) \\
\dot{s}_{1}=\frac{1}{s_{5}}\left(-5^{8} s_{0}^{12}+5^{5} s_{0}^{8} s_{1}+5^{8} s_{0}^{2} s_{4}^{10}+s_{1} s_{3}\right) \\
\dot{s}_{2}=\frac{1}{s_{5}}\left(-3 \cdot 5^{9} s_{0}^{14}-5^{4} s_{0}^{10} s_{1}+2 \cdot 5^{5} s_{0}^{8} s_{2}+3 \cdot 5^{9} s_{0}^{4} s_{4}^{10}+5^{4} s_{1} s_{4}^{10}+2 s_{2} s_{3}\right) \\
\dot{s}_{3}=\frac{1}{s_{5}}\left(-5^{10} s_{0}^{16}-5^{4} s_{0}^{10} s_{2}+3 \cdot 5^{5} s_{0}^{8} s_{3}+5^{10} s_{0}^{3} s_{4}^{10}+5^{4} s_{2} s_{4}^{10}+3 s_{3}^{2}\right) \\
\dot{s}_{4}=\frac{1}{10 s_{5}}\left(5^{6} s_{0}^{8} s_{4}+5 s_{3} s_{4}\right) \\
\dot{s}_{5}=\frac{1}{s_{5}}\left(-5^{4} s_{0}^{10} s_{6}+3 \cdot 5^{5} s_{0}^{8} s_{5}+2 s_{3} s_{5}+5^{4} s_{4}^{10} s_{6}\right) \\
\dot{s}_{6}=\frac{1}{s_{5}}\left(3 \cdot 5^{5} s_{0}^{8} s_{6}-5^{5} s_{0}^{6} s_{5}-2 s_{2} s_{5}+3 s_{3} s_{6}\right) \\
\dot{s}_{7}=-s_{8} \\
\dot{s}_{8}=-\frac{5^{12}\left(s_{0}^{10}-s_{4}^{10}\right)}{s_{5}} \cdot \frac{15}{8}\left(\frac{s_{4}}{s_{0}}\right)^{5} \frac{1}{25 \sqrt{5}} \\
Y=\frac{5^{8}\left(s_{4}^{10}-s_{0}^{10}\right)^{2}}{s_{5}^{3}}, \quad \mathrm{~F}=-s_{7} \mathrm{Y}
\end{array}\right.
$$

Disk counts

After solving the differential equation considering the same coordinate q and derivation $5 q \frac{d}{d q}$ as in the absolute case, we get:

$$
\begin{aligned}
\frac{-4}{5^{3}} F(q):=30 q^{1 / 2} & +13800 q^{3 / 2}+27206280 q^{5 / 2}+\ldots= \\
& =\sum_{d \text { odd }} n_{d}^{\text {disk }} d^{2} \frac{q^{d / 2}}{1-q^{d}}
\end{aligned}
$$

We will now try to answer the question: Why are these numbers appearing?

Group Action

$$
\begin{aligned}
& G_{4}:=\left\{g=\left[g_{i j}\right]_{4 \times 4} \in \operatorname{GL}(4, \mathbb{C}) \mid g_{i j}=0, \text { for } j<i \text { and } g^{\mathrm{t}} \Phi g=\Phi\right\} \\
& G_{5}:=\left\{g=\left[g_{i j}\right]_{5 \times 5} \in \mathrm{GL}(5, \mathbb{C}) \mid g_{i j}=0, \text { for } j<i \text { and } g^{\mathrm{t}} \Phi g=\Phi\right\}
\end{aligned}
$$

They act, respectively, on T and S by changing the basis α.

Period Matrix

- The period matrix is the matrix given by

$$
P=\left[\int_{\delta_{i}} \alpha_{j}\right]
$$

where δ_{0} is the homology connecting the two conics and the other δ_{i} are a symplectic basis for the homology.

- Using the properties of the basis α, δ and the Poincaré duality, we can derive restrictions for the entries of P.
- The groups G_{4} and G_{5} act by multiplication form the right. This action is compatible with the period map.
- There is also a left action on the space matrix via multiplication. This is simply changing the basis of the homology! This groups are the "modular" groups.

The GMCD project

τ-locus

After some computations, one can prove that the matrices modulo the action of the groups are of the form:

$$
\tau=\left(\begin{array}{cccc}
\tau_{0} & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\tau_{1} & \tau_{3} & 1 & 0 \\
\tau_{2} & -\tau_{0} \tau_{3}+\tau_{1} & -\tau_{0} & 1
\end{array}\right)
$$

and

$$
\tau=\left(\begin{array}{ccccc}
1 & \tau_{4} & \tau_{5} & 0 & 0 \\
0 & \tau_{0} & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & \tau_{1} & \tau_{3} & 1 & 0 \\
0 & \tau_{2} & -\tau_{0} \tau_{3}+\tau_{1} & -\tau_{0} & 1
\end{array}\right)
$$

The GMCD project

Mirror Map and Periods

The τ_{i} are quotients of periods and derivatives of quotients of periods. Those are the main ingredients in the changes of coordinates that happen in Mirror Symmetry.

Let L denote the fundamental domains above. L depends only on τ_{0} and the vector field $\frac{\partial}{\partial \tau_{0}}$ correspond to the modular vector field \mathbf{R} after pulling back to T or S !

This means that the coordinate q is actually the exponential of τ_{0} : the Physics' mirror map.

Open Questions

(1) Make the same process to general Calabi-Yau varieties or even more general spaces. What kind of generating functions should we get? Is the Moduli Space quasi-affine?
(2) Consider a moving family inside X, not only a fixed family (e.g a family of divisors). This should give us a generalization of Jacobi forms.
(3) Consider other cases in which we have a mixed Hodge structure, for example, singular projective varieties.

References I

目 Hossein Movasati.
Modular-type functions attached to mirror quintic
Calabi-Yau varieties.
Math. Z., 281(3-4):907-929, December 2015.
家
Felipe Espreafico.
Gauss-manin connection in disguise: Open gromov-witten invariants.
arXiv, 2205.08302 [math-ph], Jun 2022.

The GMCD project
Closed String case
Open String case
Relationship with Mirror Symmetry

References II

R Philip Candelas, Xenia C. De La Ossa, Paul S. Green, and Linda Parkes.
A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory.
Nuclear Physics B, 359(1):21-74, July 1991.
圊 Hossein Movasati.
Quasi-modular forms attached to elliptic curves, I. Annales Mathématiques Blaise Pascal, 19(2):307-377, 2012.

䍰 Johannes Walcher.
Opening Mirror Symmetry on the Quintic. Commun. Math. Phys., 276(3):671-689, December 2007.

References III

围 R. Pandharipande, J. Solomon, and J. Walcher.
Disk Enumeration on the Quintic 3-Fold.
Journal of the American Mathematical Society,
21(4):1169-1209, 2008.
Publisher: American Mathematical Society.
國 Nicholas M. Katz and Tadao Oda.
On the differentiation of De Rham cohomology classes with respect to parameters.
Journal of Mathematics of Kyoto University, 8(2):199-213, January 1968.
Publisher: Duke University Press.

The GMCD project
Closed String case
Open String case
Relationship with Mirror Symmetry

References IV

囲 Christiaan Peters and Joseph H. M. Steenbrink. Mixed Hodge Structures.
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3.
Folge / A Series of Modern Surveys in Mathematics.
Springer-Verlag, Berlin Heidelberg, 2008.
雷 David R. Morrison and Johannes Walcher. D-branes and normal functions.
Advances in Theoretical and Mathematical Physics, 13(2):553-598, April 2009.
Publisher: International Press of Boston.

