# Family 3-5 and $\delta$-invariant of polarized del Pezzo surfaces. 

Elena Denisova

4 April 2024

## Motivation and Knowledge

A smooth Fano variety $X$ admits a Kähler-Einstein metric $X$ is K-polystable.
$n=\operatorname{dim}(X)$

- $n=1: \mathbb{P}^{1}$ is $K$-polystable
- $n=2$ : a del Pezzo surface is $K$-polystable if and only if it is not a blow up of $\mathbb{P}^{2}$ in one or two points
- $n=3$ : smooth Fano threefolds have been classified into 105 families


## Calabi Problem:

Find all K-polystable smooth Fano threefolds in each family. in The Calabi Problem for Fano Threefolds" (2021) by C. Araujo, A.-M. Castravet, I. Cheltsov, K. Fujita, A.-S. Kaloghiros, J. Martines-Garcia, C. Shramov, H. Suss, N. Viswanathan

## $\delta$-invariant

We define

$$
\delta(X)=\inf _{\mathbf{F} / X} \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})}
$$

Theorem
The following assertions holds:

- $X$ is $K$-stable $\Leftrightarrow \delta(X)>1$
- $X$ is $K$-semistable $\Leftrightarrow \delta(X) \geqslant 1$.

We define

$$
\delta_{P}(X)=\inf _{\substack{\mathbf{F} / X \\ P \in C_{X}(\mathbf{F})}} \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})}
$$

Theorem
The following assertions holds:

- $X$ is $K$-stable $\Leftrightarrow \delta_{P}(X)>1$ for all $P \in X$
- $X$ is $K$-semistable $\Leftrightarrow \delta_{P}(X) \geqslant 1$ for all $P \in X$.


## Abban-Zhuang Theory via Kento Fujita formula

Let $P$ be the point in $X$. We want to estimate $\delta_{P}(X)$ :

1. Choose surface $S \subset X$ such that $P \in S$
2. Compute

$$
\tau=\tau(S)=\sup \left\{u \in \mathbb{Q}>0 \mid-K_{X}-u S \text { is big }\right\}
$$

3. For $u \in[0, \tau]$ let

- $P(u)$ be the positive part of the Zariski decomposition of the divisor $-K_{X}-u S$
- $N(u)$ be the negative part of the Zariski decomposition of the divisor $-K_{X}-u S$

4. Compute

$$
S_{X}(S)=\frac{1}{\left(-K_{X}\right)^{3}} \int_{0}^{\tau} P(u)^{3} d u
$$

## Abban-Zhuang Theory via Kento Fujita formula

Theorem

$$
\delta_{P}(X) \geqslant \min \left\{\frac{1}{S_{X}(S)}, \delta_{P}\left(S, W_{\bullet, \bullet}^{S}\right)\right\}
$$

where

$$
\delta_{P}\left(S, W_{\bullet, 0}^{S}\right)=\inf _{\substack{F, S \\ P \in C_{S}(F)}} \frac{A_{S}(F)}{S\left(W_{\mathbf{0}, ;}^{S} ; F\right)},
$$

the infimum is taken by all prime divisors $F$ over the surface $S$ such that $P \in C_{S}(F)$ and

$$
\begin{aligned}
S\left(W_{\bullet,}^{S}, F\right)= & \frac{3}{\left(-K_{X}\right)^{3}} \int_{0}^{\tau}\left(P(u)^{2} \cdot S\right) \cdot \operatorname{ord}_{F}\left(\left.N(u)\right|_{S}\right) d u+ \\
& +\frac{3}{\left(-K_{X}\right)^{3}} \int_{0}^{\tau} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{S}-v F\right) d v d u
\end{aligned}
$$

## Local $\delta$-invariant for surfaces

Let $S$ be a smooth surface, let $D$ be a big and nef divisor on $S$. For every prime divisor $F$ over $S$, set

$$
S_{D}(F)=\frac{1}{D^{2}} \int_{0}^{\infty} \operatorname{vol}(D-v F) d v
$$

Let $P$ be point in $S$, and let

$$
\delta_{P}(S, D)=\inf _{\substack{F / S \\ P \in C_{S}(F)}} \frac{A_{S}(F)}{S_{D}(F)}
$$

where the infimum is taken by all prime divisors over $S$ whose center on $S$ contains $P$.
If $D=-K_{S}$ then $\delta_{P}\left(S,-K_{S}\right)$ is denoted by $\delta_{P}(S)$.

## How to estimate $\delta_{P}(S, D)$ from above?

- Fix a smooth curve $C \subset S$ that passes through $P$.
- Set

$$
\tau=\sup \left\{v \in \mathbb{R}_{\geqslant 0} \mid \text { the divisor } D-v C \text { is pseudo-effective }\right\}
$$

- For $v \in[0, \tau]$, let $P(v)$ and $N(v)$ be the positive part and negative of the Zariski decomposition of the divisor $D-v C$.
- Then $A_{S}(C)=1$ and

$$
S_{D}(C)=\frac{1}{D^{2}} \int_{0}^{\infty} \operatorname{vol}(D-v C) d v=\frac{1}{D^{2}} \int_{0}^{\tau} P(v)^{2} d v
$$

Thus

$$
\delta_{P}(S, D) \leqslant \frac{1}{S_{D}(C)}
$$

How to estimate $\delta_{P}(S, D)$ from below?

- Set

$$
\begin{array}{r}
S\left(W_{\bullet, \bullet}^{C} ; P\right)=\frac{2}{D^{2}} \int_{0}^{\tau} \operatorname{ord}_{P}\left(\left.N(v)\right|_{C}\right)(P(v) \cdot C) d v+ \\
+\frac{1}{D^{2}} \int_{0}^{\tau}(P(v) \cdot C)^{2} d v=\frac{2}{D^{2}} \int_{0}^{\tau} h(v) d v
\end{array}
$$

where

$$
h(v)=(P(v) \cdot C) \times(N(v) \cdot C)_{P}+\frac{(P(v) \cdot C)^{2}}{2}
$$

Then it follows from Abban-Zhuang Theory that

$$
\left.\delta_{P}(S, D) \geqslant \min \left\{\frac{1}{S_{D}(C)}, \frac{1}{S\left(W_{\bullet}^{C}, \bullet\right.} ; P\right)\right\}
$$

How to estimate $\delta_{P}(S, D)$ from above using blowups?

- Let $f: \widetilde{S} \rightarrow S$ be the blow up of $S$ at the point $P$, and let $E$ be the $f$-exceptional curve.
- Set

$$
\widetilde{\tau}=\sup \left\{u \in \mathbb{R}_{\geqslant 0} \mid \text { the divisor } f^{*}(D)-v E \text { is pseudo-effective }\right\}
$$

- For $v \in[0, \widetilde{\tau}]$, let $\widetilde{P}(v)$ and $\widetilde{N}(v)$ be the positive and negative part of the Zariski decomposition of the divisor $f^{*}(D)-v E$.
- Then $A_{S}(E)=2$ and

$$
S_{D}(E)=\frac{1}{D^{2}} \int_{0}^{\widetilde{\tau}} \widetilde{P}(v)^{2} d v
$$

Then

$$
\delta_{P}(S, D) \leqslant \frac{2}{S_{D}(E)}
$$

How to estimate $\delta_{P}(S, D)$ from below using blowups?

- for every point $O \in E$, we set

$$
\begin{aligned}
S\left(W_{\bullet, \bullet}^{E} ; O\right) & =\frac{2}{D^{2}} \int_{0}^{\widetilde{\tau}} \operatorname{ord}{ }_{O}\left(\left.\widetilde{N}(v)\right|_{E}\right)\left(\left.\widetilde{P}(v)\right|_{E}\right) d v+ \\
& +\frac{1}{D^{2}} \int_{0}^{\widetilde{\tau}}(\widetilde{P}(v) \cdot E)^{2} d v=\frac{1}{D^{2}} \int_{0}^{\widetilde{\tau}} h(v) d v .
\end{aligned}
$$

where

$$
h(v)=(\widetilde{P}(v) \cdot E) \times(\widetilde{N}(v) \cdot E)_{P}+\frac{(\widetilde{P}(v) \cdot E)^{2}}{2}
$$

Then it follows from from Abban-Zhuang Theory that that

$$
\delta_{P}(S, D) \geqslant \min \left\{\frac{2}{S_{D}(E)}, \inf _{O \in E} \frac{1}{S\left(W_{\bullet, \bullet} ; O\right)}\right\}
$$

## Example: $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Let $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$. Suppose $P \in L_{1}$ where $L_{1}$ is one of the rulings.

$$
\begin{gathered}
P(v)=-K_{S}-v L_{1} \text { and } N(v)=0 \text { for } v \in[0,2] \\
P(v)^{2}=4(2-v) \text { and } P(v) \cdot L_{1}=2 \text { for } v \in[0,2]
\end{gathered}
$$

Thus,

$$
S_{S}\left(L_{1}\right)=\frac{1}{8} \int_{0}^{2} 4(2-v) d v=1 \Rightarrow \delta_{P}(S) \leq 1
$$

$h(v)=\left(P(v) \cdot L_{1}\right) \times\left(N(v) \cdot L_{1}\right)_{P}+\frac{\left(P(v) \cdot L_{1}\right)^{2}}{2}=2$ for $v \in[0,2]$
Thus,

$$
S\left(W_{\bullet, \bullet}^{L_{1}} ; P\right)=\frac{2}{8} \int_{0}^{2} h(v) d v=\frac{2}{8} \int_{0}^{2} 2 d v=1
$$

Thus, $\delta_{P}(S) \geq \min \{1,1\}=1$.

## Fano threefolds of Picard rank 3 and degree 20

Let $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$, let $C$ be a smooth curve in $S$ of degree $(5,1)$, and let $\epsilon: C \rightarrow \mathbb{P}^{1}$ be the morphism induced by the projection $S \rightarrow \mathbb{P}^{1}$ to the first factor.

- $\operatorname{deg}(\epsilon)=5$
- Assume the points ([1:0], [0:1]) and ([0:1], [1:0]) are among ramifications points
- So the curve $C$ is given by

$$
u\left(x^{5}+a_{1} x^{4} y+a_{2} x^{3} y^{2}+a_{3} x^{2} y^{3}\right)=v\left(y^{5}+b_{1} x y^{4}+b_{2} x^{2} y^{3}+b_{3} x^{3} y^{2}\right)
$$

## Fano threefolds of Picard rank 3 and degree 20

The ramification index of the point ([1:0], [0:1]) can be computed as follows:

$$
\left\{\begin{array}{l}
2 \text { if } a_{3} \neq 0, \\
3 \text { if } a_{3}=0 \text { and } a_{2} \neq 0, \\
4 \text { if } a_{3}=a_{2}=0 \text { and } a_{1} \neq 0, \\
5 \text { if } a_{3}=a_{2}=a_{1}=0
\end{array}\right.
$$

Likewise, we can compute the ramification index of the point ([0:1], [1:0]). We may assume that

- ([1:0], $[0: 1])$ has the largest ramification index among all ramifications points of $\epsilon$
- the ramification index of the point $([0: 1],[1: 0])$ is the second largest index.


## Fano threefolds of Picard rank 3 and degree 20

$C: u\left(x^{5}+a_{1} x^{4} y+a_{2} x^{3} y^{2}+a_{3} x^{2} y^{3}\right)=v\left(y^{5}+b_{1} x y^{4}+b_{2} x^{2} y^{3}+b_{3} x^{3} y^{2}\right)$

- if both indices are 5 then $a_{1}=a_{2}=a_{3}=b_{1}=b_{2}=b_{3}=0$

$$
C: u x^{5}=v y^{5} \text { and } \operatorname{Aut}(S, C) \cong \mathbb{C}^{*} \rtimes \mathbb{Z} / 2 \mathbb{Z}
$$

- otherwise $\operatorname{Aut}(S, C)<\infty$


## Fano threefolds of Picard rank 3 and degree 20

Now, we consider embedding $S \hookrightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}$ given by

$$
([u: v],[x: y]) \mapsto\left([u: v],\left[x^{2}: x y: y^{2}\right]\right)
$$

and identify $S$ and $C$ with their images in $\mathbb{P}^{1} \times \mathbb{P}^{2}$. Let $\pi: X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}$ be the blow up of the curve $C$. We denote a strict transform of $S$ by $\widetilde{S}$.

$$
\begin{array}{r}
\widetilde{S} \subset X \\
\left.C\right|_{\Downarrow} \\
C \subset S=\mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \longrightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}
\end{array}
$$

Then $X$ is a smooth Fano threefold in the deformation family № 3.5 in the Mori-Mukai list and every smooth member of this family can be obtained in this way.

## Known results (Book)

$C: u\left(x^{5}+a_{1} x^{4} y+a_{2} x^{3} y^{2}+a_{3} x^{2} y^{3}\right)=v\left(y^{5}+b_{1} x y^{4}+b_{2} x^{2} y^{3}+b_{3} x^{3} y^{2}\right)$

- $X$ is K -stable if $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ are general enough,
- $X$ is K-polystable if $a_{1}=a_{2}=a_{3}=b_{1}=b_{2}=b_{3}=0$,
- $X$ is not K-polystable if $\left(a_{1}, a_{2}, a_{3}\right)=(0,0,0) \neq\left(b_{1}, b_{2}, b_{3}\right)$,
- $\operatorname{Aut}(X)$ is finite $\Leftrightarrow\left(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right) \neq(0,0,0,0,0,0)$,
- in this case $X$ is K -polystable $\Leftrightarrow X$ is $K$-stable.

Let $\mathrm{pr}_{1}: \mathbb{P}^{1} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ be the projection to the first factor and $\phi_{1}=\operatorname{pr}_{1} \circ \pi$. Then $\phi_{1}$ is a fibration into del Pezzo surfaces of degree four.


## Conjecture

## Conjecture (Book)

The Fano threefold $X$ is $K$-stable $\Leftrightarrow\left(a_{1}, a_{2}, a_{3}\right) \neq(0,0,0)$.
Geometrically, this conjecture says that the following two conditions are equivalent:

1. the threefold $X$ is K -stable,
2. the morphism $\epsilon: C \rightarrow \mathbb{P}^{1}$ does not have ramification points of ramification index five.
So it can be restated as follows:

## Conjecture

The Fano threefold $X$ is $K$-stable if and only if every singular fiber of $\phi_{1}$ has only singular points of type $\mathbb{A}_{1}, \mathbb{A}_{2}$ or $\mathbb{A}_{3}$.

## Goal

The goal is to prove the following (slightly weaker) result:
Theorem
If all ramification points of $\epsilon$ have ramification index two, then $X$ is $K$-stable.
which can be restated as follows:
Theorem
If every singular fiber of $\phi_{1}$ has only singular points of type $\mathbb{A}_{1}$, then $X$ is $K$-stable.

## Proof

Recall that $X$ is $K$-stable $\Leftrightarrow \delta_{O}(X)>1$ for all $O \in X$ where

$$
\delta_{O}(X)=\inf _{\substack{\mathbf{F} / X \\ O \in C_{X}(\mathbf{F})}} \frac{A_{X}(\mathbf{F})}{S_{X}(\mathbf{F})}
$$

for every prime divisor $\mathbf{F}$ over $X$ such that $O \in C_{X}(\mathbf{F})$. Let's prove that if each singular fiber of the fibration $\phi_{1}$ has one or two singular points of type $\mathbb{A}_{1}$ then $\delta_{O}(X)>1$ for all $O \in X$ !

- Fix a point $O \in X$


## Reminder: Abban-Zhuang Theory via Kento Fujita formula

Theorem
Let $X$ be a smooth Fano threefold, let $Y$ be an irreducible normal surface in $X$. Suppose $P(u)$ and $N(u)$ are the positive part and negative parts of $Z D$ of $-K_{X}-u Y$. Then

$$
\delta_{P}(X) \geqslant \min \left\{\frac{1}{S_{X}(Y)}, \delta_{P}\left(S, W_{\bullet, \bullet}^{Y}\right)\right\}
$$

where

$$
\delta_{P}\left(Y, W_{\bullet, \bullet}^{Y}\right)=\inf _{\substack{F / Y \\ P \in C_{S}(F)}} \frac{A_{Y}(F)}{S\left(W_{\bullet, \bullet}^{Y} ; F\right)},
$$

the infimum is taken by all prime divisors $F / Y, P \in C_{S}(F)$ and

$$
\begin{aligned}
S\left(W_{\bullet,}^{Y} ; F\right)= & \frac{3}{\left(-K_{X}\right)^{3}} \int_{0}^{\tau}\left(P(u)^{2} \cdot Y\right) \cdot \operatorname{ord}_{F}\left(\left.N(u)\right|_{Y}\right) d u+ \\
& +\frac{3}{\left(-K_{X}\right)^{3}} \int_{0}^{\tau} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{Y}-v F\right) d v d u,
\end{aligned}
$$

## Proof: $O \in \widetilde{S}$

- $S_{X}(\widetilde{S})=\frac{1}{\left(-K_{X}\right)^{3}} \int_{0}^{\tau} \operatorname{vol}\left(-K_{X}-u \widetilde{S}\right) d u=\frac{31}{40}<1$
- Recall that $\widetilde{S} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ with rulings $\ell_{1}$ and $\ell_{2}$
- $\left.\widetilde{S}\right|_{\widetilde{S}}=-\ell_{1}-\ell_{2},\left.K_{X}\right|_{\widetilde{S}}=\ell_{1}+\ell_{2}$
- Let $O \in \ell_{2}$
- Set $Y=\widetilde{S}$, compute $\tau, P(u), N(u)$, estimate $\delta_{O}\left(\widetilde{S},\left.P(u)\right|_{\widetilde{S}}\right)$, and get $\delta_{O}(X)>1$.


## Proof: $O \notin \widetilde{S}$

- Let $\bar{T}$ be the fiber of $\phi_{1}$ such that $O \in \bar{T}$
- $\bar{T}$ is a del Pezzo surface with at most Du Val singularities
- Set $\tau=\sup \left\{u \in \mathbb{R}_{>0} \mid-K_{X}-u \bar{T}\right.$ is pseudo-effective $\}$
- For $u \in[0, \tau]$ :
- $P(u)$ be the positive part of the ZD of the divisor $-K_{X}-u \bar{T}$
- $N(u)$ be its negative part of the ZD of the divisor $-K_{X}-u \bar{T}$

$$
P(u)=\left\{\begin{array}{l}
-K_{X}-u \bar{T}, u \in[0,1], \\
-K_{X}-u \bar{T}-(u-1) \widetilde{S}, u \in[1,2]
\end{array} \quad N(u)=\left\{\begin{array}{l}
0, u \in[0,1], \\
(u-1) \widetilde{S}, u \in[1,2],
\end{array}\right.\right.
$$

$$
S_{X}(\bar{T})=\frac{1}{20} \int_{0}^{2} P(u)^{3} d u=\frac{69}{80}<1
$$

## Proof: $O \notin \widetilde{S}$

Since $O \notin \widetilde{S}$ then for any divisor $F$ over $\bar{T}$ we get

$$
\begin{aligned}
& S\left(W_{0,}^{\bar{T}} ; F\right)=\frac{3}{\left(-K_{X}\right)^{3}}\left(\int_{0}^{\tau}\left(P(u)^{2} \cdot \bar{T}\right) \cdot \operatorname{ordo}\left(\left.N(u)\right|_{\bar{T}}\right) d u+\right. \\
& \left.\quad+\int_{0}^{\tau} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{\bar{T}}-v F\right) d v d u\right)=\frac{3}{20} \int_{0}^{\tau} \int_{0}^{\infty} \operatorname{vol}\left(\left.P(u)\right|_{\bar{T}}-v F\right) d v d u= \\
& =\frac{3}{20}\left(\int_{0}^{1} \int_{0}^{\infty} \operatorname{vol}\left(-K_{\bar{T}}-v F\right) d v d u+\int_{1}^{2} \int_{0}^{\infty} \operatorname{vol}\left(-K_{\bar{T}}-(u-1) \bar{C}_{2}-v F\right) d v d u\right)= \\
& =\frac{3}{20}\left(\int_{0}^{\infty} \operatorname{vol}\left(-K_{\bar{T}}-v F\right) d v+\int_{0}^{\infty} \operatorname{vol}\left(-K_{T}-(u-1) \bar{C}_{2}-v F\right) d v\right) \leq \\
& =\frac{3}{20}\left(\int_{0}^{\infty} \operatorname{vol}\left(-K_{\bar{T}}-v F\right) d v+\int_{0}^{\infty} \operatorname{vol}\left(-K_{\bar{T}}-v F\right) d v\right)= \\
& =\frac{3}{10}\left(\int_{0}^{\infty} \operatorname{vol}\left(-K_{\bar{T}}-v F\right) d v\right)=\frac{6}{5}\left(\frac{1}{4} \int_{0}^{\infty} \operatorname{vol}\left(-K_{\bar{T}}-v F\right) d v\right)= \\
& =\frac{6}{5} S_{\bar{T}}(F) \leq \frac{6}{5} \cdot \frac{A_{\bar{T}}(F)}{\delta_{O}(\bar{T})}
\end{aligned}
$$

So if $\delta_{O}(\bar{T})>6 / 5$, then $\delta_{O}(X)>1$.

## Smooth $d P_{4}$

$$
\delta_{P}(T)=\left\{\begin{array}{l}
\frac{4}{3} \text { if } P \in \text { two }(-1) \text {-curves } \\
\frac{18}{13} \text { if } P \in \text { one }(-1) \text {-curve } \\
\frac{3}{2}, \text { otherwise }
\end{array}\right.
$$


$\mathbf{E}:=E_{1} \cup E_{2} \cup E_{3} \cup L_{45}$, $\mathbf{F}:=\{(-1)$-curves $\} \backslash \mathbf{E}$ then
$\delta_{P}(T)=\left\{\begin{array}{l}1 \text { if } P \in L_{123}, \\ \frac{6}{5} \text { if } P \in \mathbf{E} \backslash L_{123}, \\ \frac{4}{3} \text { if } P \in \text { two curves in } \mathbf{F}, \\ \frac{18}{13} \text { if } P \in \text { one curve in } \mathbf{F}, \\ \frac{3}{2}, \text { otherwise }\end{array}\right.$


Suppose
$\mathbf{E}:=E_{2} \cup L_{13} \cup L_{14} \cup L_{34}$,
$\mathbf{F}:=\left(L_{23} \cap E_{2}\right) \cup\left(L_{24} \cap E_{4}\right)$,
$\mathbf{G}:=L_{23} \cup E_{2} \cup L_{24} \cup E_{4}$
$\delta_{P}(T)=\left\{\begin{array}{l}1 \text { if } P \in E_{1} \cup L_{25} \cup E_{5}, \\ \frac{6}{5} \text { if } P \in \mathbf{E} \backslash\left(E_{1} \cup L_{25}\right), \\ \frac{4}{3} \text { if } P \in \mathbf{F}, \\ \frac{18}{13} \text { if } P \in \mathbf{G} \backslash(\mathbf{E} \cup \mathbf{F}), \\ \frac{3}{2}, \text { otherwise }\end{array}\right.$


## $\mathbb{A}_{1}+\mathbb{A}_{1}(2)$

Suppose $\mathbf{E}:=E_{1} \cup E_{2} \cup E_{3} \cup E_{5} \cup L_{14} \cup L_{24} \cup L_{34} \cup L_{5}$,

$$
\delta_{P}(T)=\left\{\begin{array}{l}
1 \text { if } P \in E_{4} \cup L_{123} \\
\frac{6}{5} \text { if } P \in \mathbf{E} \backslash\left(E_{4} \cup L_{123}\right) \\
\frac{3}{2}, \text { otherwise }
\end{array}\right.
$$



Suppose $\mathbf{E}:=L_{123} \cup E_{3}, \mathbf{F}:=E_{1} \cup E_{2} \cup E_{5} \cup L_{34}, \mathbf{G}:=\left(E_{4} \cup L_{5}\right) \cap\left(L_{14} \cup L_{24}\right)$, $\mathbf{H}:=E_{4} \cup L_{14} \cup L_{24} \cup L_{5}$

$$
\delta_{P}(T)=\left\{\begin{array}{l}
\frac{6}{7} \text { if } P \in \mathbf{E} \\
\frac{8}{7} \text { if } P \in \mathbf{F} \backslash \mathbf{E} \\
\frac{4}{3} \text { if } P \in \mathbf{G} \\
\frac{18}{13} \text { if } P \in \mathbf{H} \backslash \mathbf{G} \\
\frac{3}{2}, \text { otherwise }
\end{array}\right.
$$



Suppose $\mathbf{E}:=E_{2} \cup E_{4}, \mathbf{F}:=E_{5} \cup L_{12}, \mathbf{G}:=E_{1} \cup Q$



Suppose $\mathbf{E}:=L_{123} \cup E_{3} \cup E_{4}, \mathbf{F}:=E_{1} \cup E_{2} \cup E_{5} \cup L_{4}$

$$
\delta_{P}(T)=\left\{\begin{array}{l}
\frac{3}{4} \text { if } P \in \mathbf{E}, \\
\frac{9}{8} \text { if } P \in \mathbf{F} \backslash \mathbf{E}, \\
\frac{3}{2}, \text { otherwise }
\end{array}\right.
$$


$\delta_{P}(T)=\left\{\begin{array}{l}\frac{6}{11} \text { if } P \in E_{2}, \\ \frac{24}{37} \text { if } P \in E_{3} \backslash E_{2}, \\ \frac{4}{5} \text { if } P \in E_{4} \backslash E_{3}, \\ \frac{24}{29} \text { if } P \in L_{2} \backslash E_{2}, \\ \frac{9}{11} \text { if } P \in E_{1} \backslash E_{2}, \\ \frac{24}{23} \text { if } P \in E_{5} \backslash E_{4}, \\ \frac{18}{13} \text { if } P \in Q \backslash E_{5}, \\ \frac{3}{2}, \text { otherwise }\end{array}\right.$

## Proof

We see that if $\bar{T}$ is smooth then $\delta_{O}(\bar{T})>\frac{6}{5}$ so $\delta_{O}(X)>1$.
So we may assume that $O \notin \widetilde{S}$ and $\bar{T}$ is singular.
Recall that
$\delta_{O}(\bar{T}, \bar{D})=\inf _{\substack{F / \bar{T} \\ O \in C_{\bar{T}}(F)}} \frac{A_{\bar{T}}(F)}{S_{\bar{D}}(F)}$ where $S_{\bar{D}}(F)=\frac{1}{\bar{D}^{2}} \int_{0}^{\tau} \operatorname{vol}(\bar{D}-v F) d v$
where $\tau$ is the pseudo-effective threshold of $F$ with respect to $\bar{D}$.

## Proof: $\delta_{O}(\bar{T}) \leq 6 / 5$

We will prove that $\delta_{O}(\bar{T}, \bar{D}) \geq f(u)$ for every $u \in[1,2]$ :

$$
f(u)=\left\{\begin{array}{l}
\frac{15-3 u^{2}}{16+3 u-9 u^{2}+2 u^{3}} \text { for } u \in[1, a] \\
\frac{15-3 u^{2}}{11-u^{3}} \text { for } u \in[a, 2]
\end{array}\right.
$$

$$
\begin{aligned}
& S\left(W_{\bullet, \bullet}^{\bar{T}} ; F\right)= \\
& =\frac{3}{\left(-K_{X}\right)^{3}} \int_{1}^{2} \int_{0}^{\tau} \operatorname{vol}\left(\left.P(u)\right|_{\bar{T}}-v F\right) d v d u+\frac{3}{\left(-K_{X}\right)^{3}} \int_{0}^{1} \int_{0}^{\tau} \operatorname{vol}\left(\left.P(u)\right|_{\bar{T}}-v F\right) d v d u \leq \\
& \leq \frac{3}{20}\left(\int_{1}^{2} \frac{\left(5-u^{2}\right)}{\delta_{O}(\bar{T}, \bar{D})} d u\right) A_{\bar{T}}(F)+\frac{3}{20} \cdot \frac{4 A_{\bar{T}}(F)}{\delta_{O}(\bar{T})} \leq \\
& \leq \frac{3}{20}\left(\int_{1}^{2} \frac{\left(5-u^{2}\right)}{f(u)} d u\right) A_{\bar{T}}(F)+\frac{3}{5} A_{\bar{T}}(F) \leq \frac{99}{100} A_{\bar{T}}(F)
\end{aligned}
$$

Thus $\frac{A_{\bar{T}}(F)}{S\left(W_{\bullet}, * F\right)} \geq \frac{100}{99}$ for $\forall$ prime $F$ over $\bar{T}, O \in C_{\bar{T}}(F)$ so that $\delta_{O}(\bar{T}, \bar{D}) \geq \frac{100}{99}$ and $X$ is $K$-stable.

## Proof that $\delta_{O}(\bar{T}, \bar{D}) \geq f(u)$ ?

- $\bar{T}$ is a Du Val del Pezzo surface
- blow up $\pi$ induces a birational morphism $v: \bar{T} \rightarrow \mathbb{P}^{2}$ which is weighted blow up:

- Suppose $u \in[1,2]$ :
- $\bar{D}=-K_{\bar{T}}-(1-u) \bar{C}_{2}$ where $\bar{C}_{2}:=\left.\widetilde{S}\right|_{\bar{T}}$
- $\bar{C}_{2}$ is contained in the smooth locus of the surface $\bar{T}$
- $C_{2}$ is the strict transform of the curve $\bar{C}_{2}$ on the surface $T$
- $D=-K_{T}-(1-u) C_{2}=\sigma^{*}(\bar{D})$ so $D$ is big and nef and $D^{2}=5-u^{2}$ for $u \in[1,2]$


## Reminder: $\delta$-invariant

Recall that

$$
\delta_{O}(\bar{T}, \bar{D})=\inf _{\substack{F / \bar{T} \\ O \in C_{\bar{T}}(F)}} \frac{A_{\bar{T}}(F)}{S_{D}(F)}
$$

where the infimum is run over all prime divisor $F$ over $\bar{T}$ such that $O \in C_{\bar{T}}(F)$. For every point $P \in T$, we also define

$$
\delta_{P}(T, D)=\inf _{\substack{E / T \\ P \in C_{T}(E)}} \frac{A_{T}(E)}{S_{D}(E)}
$$

where the infimum is run over all prime divisor $E$ over $T$ such that $P \in C_{T}(E)$. Since $D=\sigma^{*}(\bar{D})$ and $K_{T}=\sigma^{*}\left(K_{\bar{T}}\right)$, we have

$$
\delta_{O}(\bar{T}, \bar{D})=\inf _{P: O=\sigma(P)} \delta_{P}(T, D)
$$

So, to estimate $\delta_{O}(\bar{T}, \bar{D})$ it is enough to estimate $\delta_{P}(T, D)$ for $P$ all points $P$ such that $\sigma(P)=O$.

## Reminder: how to estimate $\delta_{P}(S, D)$ ?

- Fix a smooth curve $\mathcal{C} \subset T$ that passes through $P$.
- $\tau=\sup \left\{v \in \mathbb{R}_{\geqslant 0} \mid\right.$ the divisor $D-v \mathcal{C}$ is pseudo-effective $\}$
- For $v \in[0, \tau]$, let $P(v)$ and $N(v)$ be the positive part and negative of the Zariski decomposition of the divisor $D-v C$.
- Then $A_{S}(\mathcal{C})=1$ and $S_{D}(\mathcal{C})=\frac{1}{D^{2}} \int_{0}^{\infty} \operatorname{vol}(D-v \mathcal{C}) d v$

Thus

$$
\delta_{P}(T, D) \leqslant \frac{1}{S_{D}(\mathcal{C})}
$$

- Set $S\left(W_{\bullet, \bullet}^{\mathcal{C}} ; P\right)=\frac{2}{D^{2}} \int_{0}^{\tau} h(v) d v$ where

$$
h_{D}(v)=(P(v) \cdot \mathcal{C}) \times(N(v) \cdot \mathcal{C})_{P}+\frac{(P(v) \cdot \mathcal{C})^{2}}{2}
$$

Then it follows from Abban-Zhuang Theory that

$$
\delta_{P}(T, D) \geqslant \min \left\{\frac{1}{S_{D}(\mathcal{C})}, \frac{1}{S\left(W_{\bullet}^{\mathcal{C}} ; \bullet P\right)}\right\}
$$

## One singular point of type $\mathbb{A}_{1}$

- $\bar{T}$ has one singular point of type $\mathbb{A}_{1}$
- blow up of $\mathbb{P}^{2}$ at points $P_{1}, P_{2}, P_{3}$ and $P_{4}$ in general position and a point $P_{5}$ in the exceptional divisor corresponding to $P_{4}$
- $\delta_{P}(T) \leq \frac{6}{5} \Leftrightarrow P \in E_{4} \cup L_{14} \cup L_{24} \cup L_{24} \cup E_{5}$



## One singular point of type $\mathbb{A}_{1}$

Suppose $P \in E_{4}$ :

$$
\begin{gathered}
P(v)=\left\{\begin{array}{l}
-K_{T}-(u-1) C_{2}-v E_{4} \text { for } v \in[0,2-u] \\
-K_{T}-(u-1) C_{2}-v E_{4}-(u+v-2) E_{5} \text { for } v \in[2-u, 1] \\
-K_{T}-(u-1) C_{2}-v E_{4}-(u+v-2) E_{5}-(v-1)\left(L_{14}+L_{24}+L_{34}\right) \text { for } v \in[1,3-u]
\end{array}\right. \\
N(v)=\left\{\begin{array}{l}
0 \text { for } v \in[0,2-u] \\
(u+v-2) E_{5} \text { for } v \in[2-u, 1] \\
(u+v-2) E_{5}+(v-1)\left(L_{14}+L_{24}+L_{34}\right) \text { for } v \in[1,3-u]
\end{array}\right. \\
P(v)^{2}=\left\{\begin{array}{l}
5-u^{2}-2 v^{2} \text { for } v \in[0,2-u] \\
9+2 u v-4 u-4 v-v^{2} \text { for } v \in[2-u, 1] \quad \text { and } P(v) \cdot E_{4}=\left\{\begin{array}{l}
2 v \text { for } v \in[0,2-u] \\
2-u+v \text { for } v \in[2-u, 1] \\
2-v-2-v)(3-u-v) \text { for } v \in[1,3-u]
\end{array}\right.
\end{array} . \begin{array}{l}
-u-2-1,3-u]
\end{array}\right.
\end{gathered}
$$

Thus,

$$
\begin{aligned}
S_{D}\left(E_{4}\right)=\frac{1}{5-u^{2}}\left(\int_{0}^{2-u} 5-u^{2}-2 v^{2} d v\right. & +\int_{2-u}^{1} 9+2 u v-4 u-4 v-v^{2} d v+ \\
& \left.+\int_{1}^{3-u} 2(2-v)(3-u-v) d v\right)=\frac{16+3 u-9 u^{2}+2 u^{3}}{15-3 u^{2}}
\end{aligned}
$$

and $\delta_{P}(T, D) \leq \frac{15-3 u^{2}}{16+3 u-9 u^{2}+2 u^{3}}$

## One singular point of type $\mathbb{A}_{1}$

- if $P \in E_{4} \backslash\left(E_{5} \cup L_{14} \cup L_{24} \cup L_{34}\right)$

$$
h_{D}(v)=\left\{\begin{array}{l}
2 v^{2} \text { for } v \in[0,2-u] \\
\frac{(2-u+v)^{2}}{2} \text { for } v \in[2-u, 1] \\
\frac{(5-u-2 v)^{2}}{2} \text { for } v \in[1,3-u]
\end{array}\right.
$$

- if $P=E_{4} \cap E_{5}$

$$
h_{D}(v)=\left\{\begin{array}{l}
2 v^{2} \text { for } v \in[0,2-u] \\
\frac{(2-u+v)(u+3 v-2)}{(u+1)(5-u-2 v)} \\
\frac{(u,}{2} \text { for } v \in[2-u, 1]
\end{array}\right.
$$

- if $P \in E_{4} \cap\left(L_{14} \cup L_{24} \cup L_{34}\right)$

$$
h_{D}(v)=\left\{\begin{array}{l}
2 v^{2} \text { for } v \in[0,2-u] \\
\frac{(2-u+v)^{2}}{2} \text { for } v \in[2-u, 1] \\
\frac{(3-u)(5-u-2 v)}{2} \text { for } v \in[1,3-u]
\end{array}\right.
$$

## One singular point of type $\mathbb{A}_{1}$

So we have

- if $P \in E_{4} \backslash\left(E_{5} \cup L_{14} \cup L_{24} \cup L_{34}\right)$ then

$$
\begin{aligned}
S_{D}\left(W_{\bullet}^{E_{4}} ; P\right)=\frac{2}{5-u^{2}}\left(\int_{0}^{2-u} 2 v^{2} d v\right. & \left.+\int_{2-u}^{1} \frac{(2-u+v)^{2}}{2} d v+\int_{1}^{3-u} \frac{(5-u-2 v)^{2}}{2} d v\right)= \\
& =\frac{9+6 u-9 u^{2}+2 u^{3}}{15-3 u^{2}} \leq \frac{16+3 u-9 u^{2}+2 u^{3}}{15-3 u^{2}}
\end{aligned}
$$

- if $P=E_{4} \cap E_{5}$ then

$$
\begin{aligned}
S_{D}\left(W_{\bullet}^{E_{4}} ; P\right)=\frac{2}{5-u^{2}}\left(\int_{0}^{2-u} 2 v^{2} d v\right. & +\int_{2-u}^{1} \frac{(2-u+v)(u+3 v-2)}{2} d v+ \\
& \left.+\int_{1}^{3-u} \frac{(u+1)(5-u-2 v)}{2} d v\right)=\frac{11-u^{3}}{15-3 u^{2}}
\end{aligned}
$$

- if $P \in E_{4} \cap\left(L_{14} \cup L_{24} \cup L_{34}\right)$ then

$$
\begin{aligned}
S_{D}\left(W_{\bullet} E_{4} ; P\right)=\frac{2}{5-u^{2}}\left(\int_{0}^{2-u} 2 v^{2} d v\right. & +\int_{2-u}^{1} \frac{(2-u+v)^{2}}{2} d v+ \\
& \left.+\int_{1}^{3-u} \frac{(3-u)(5-u-2 v)}{2} d v\right)= \\
& =\frac{13+3 u^{3}-12 u^{2}+6 u}{15-3 u^{2}} \leq \frac{16+3 u-9 u^{2}+2 u^{3}}{15-3 u^{2}}
\end{aligned}
$$

## One singular point of type $\mathbb{A}_{1}$

We obtain that

$$
\delta_{P}(T, D)=\frac{15-3 u^{2}}{16+3 u-9 u^{2}+2 u^{3}} \text { for } P \in E_{4} \backslash E_{5} \text { and } u \in[1,2]
$$

and
$\delta_{P}(T, D) \geq\left\{\begin{array}{l}\frac{15-3 u^{2}}{16+3 u-9 u^{2}+2 u^{3}} \text { for } P=E_{4} \cap E_{5} \text { and } u \in[1, a] \\ \frac{15-3 u^{2}}{11-u^{3}} \text { for } P=E_{4} \cap E_{5} \text { and } u \in[a, 2]\end{array}\right.$
where $a$ is a root of $3 u^{3}-9 u^{2}+3 u+5$ on $[1,2]$. Note that $a \in[1.355,1.356]$.

