Invariance of plurigenera and KSBA moduli in positive and mixed characteristic

lacopo Brivio

National Center for Theoretical Sciences

February 9, 2023
(1) Overview
(2) Positive and mixed characteristic results
(3) What next?

Notation

- R is an excellent DVR with residue field $k=k^{\text {perf }}$ of characteristic $p>0$, and fraction field K.
- A pair (X, B) consists of a reduced, pure dimensional, $G 1$, excellent scheme X over a field or DVR, and a \mathbb{Q}-divisor $B=\sum a_{i} B_{i}$, where B_{i} are distinct prime divisors none of which is contained in $\operatorname{Sing}(X)$, and $K_{X}+B$ is \mathbb{Q}-Cartier (most of the time our pairs will be normal and integral). Note: we are not requiring X to be $S 2$.
- A scheme is demi-normal if it is $S 2$ and at worst nodal in codimension one.
- A family of pairs consists of a pair (X, B) and a flat morphism $X \rightarrow T$, where T is a regular one-dimensional scheme, such that $\left(X_{t}, B_{t}\right)$ is a pair, for all $t \in T$.
- If X is an R-scheme, X_{k}, X_{K} will denote the closed and generic fiber, respectively. Same for subschemes, coherent sheaves,....
- Confuse notation between line bundles and Cartier divisors.

Siu's Theorem and its applications

Definition

Let (X, B) be a proper pair over a field \mathbb{K}, and let m be a positive integer such that $m B$ is integral. The m-plurigenus of (X, B) is $h^{0}\left(X, m\left(K_{X}+B\right)\right):=\operatorname{dim}_{\mathbb{K}} H^{0}\left(X, m\left(K_{X}+B\right)\right)$.

Theorem (Siu '00, Berndtsson-Paun '12, Hacon-McKernan '14)

Let $\pi:(X, B) \rightarrow T$ be a projective family of normal integral complex pairs. Assume that

- π is log smooth and $\left(X_{t}, B_{t}\right)$ is klt for all $t \in T$; or
- π is log smooth and $\left(X_{t}, B_{t}\right)$ is Ic and of general type for all $t \in T$; or
- $\left(X_{t}, B_{t}\right)$ has canonical singularities for all $t \in T$.

Then $h^{0}\left(X_{t}, m\left(K_{X_{t}}+B_{t}\right)\right)$ is independent of $t \in T$ for all $m \geq 0$ such that $m B$ is integral.

Siu's Theorem and its applications

Remarks:

- Equivalently, for all such $m \geq 0$ the restriction map

$$
H^{0}\left(X, m\left(K_{X}+B\right)\right) \rightarrow H^{0}\left(X_{t}, m\left(K_{X_{t}}+B_{t}\right)\right)
$$

is surjective

- Heavily analytic proof (Ohsawa-Takegoshi's L^{2}-extension theorem).
- Application to moduli spaces for varieties of general type.

KSBA moduli

- "Higher-dimensional version of moduli of weighted stable curves."
- Idea: moduli for integral Ic pairs of general type (X, B), s.t. $\operatorname{dim}(X)=n$ and $\operatorname{vol}\left(K_{X}+B\right)=v$. These have very poorly behaved moduli spaces (non-separated).
- Solution: to such (X, B) one can associate its log canonical model

$$
\phi:(X, B) \rightarrow\left(X^{c}:=\operatorname{Proj} R\left(K_{X}+B\right), B^{c}:=\phi_{*} B\right)
$$

where $R\left(K_{X}+B\right):=\bigoplus_{m \geq 0} H^{0}\left(X,\left\lfloor m\left(K_{X}+B\right)\right\rfloor\right)$ is the canonical ring of (X, B). This is still an lc pair and $K_{X^{c}}+B^{c}$ is now ample.

- Objects: (X, B) log canonical model of dimension n and volume v.
- Families: families of log canonical models $(X, B) \rightarrow T$ of volume v and dimension n.
- The corresponding moduli functor $\mathcal{S}_{n, v}$ is separated but not proper \Longrightarrow stable pairs.

KSBA moduli

Definition

A pair over a field of characteristic zero (X, B) is s/c if

- X is demi-normal; and
- letting π : $\bar{X} \rightarrow X$ be the normalization, $\bar{D} \subset \bar{X}$ the double locus, and $\bar{B}:=\pi^{-1}(B)$, then $(\bar{X}, \bar{B}+\bar{D})$ is Ic.
If (X, B) is slc, projective, and $K_{X}+B$ is ample, we call it a stable pair. A stable family is a pair (X, B) with a flat proper morphism $\pi: X \rightarrow T$ such that
(a') $\left(X_{t}, B_{t}\right)$ is slc for all $t \in T$; or equivalently
(a") $\left(X, B+X_{t}\right)$ is slc for all $t \in T$; and
(b) $K_{X}+B$ is π-ample.

KSBA moduli

Theorem (Kollár, Hacon-Xu, Hacon-McKernan-Xu,...)

Over the complex numbers, the functor $\overline{\mathcal{S}}_{n, v}$ of stable pairs is representable, separated, proper, bounded, and it admits a projective coarse moduli space.

Remark: Siu's theorem \Longrightarrow functoriality of log canonical models.
Let $(X, B) \rightarrow T$ be a log smooth family of Ic pairs of general type. Consider the relative canonical model over T

$$
\phi:(X, B) \rightarrow\left(X^{c}:=\operatorname{Proj}_{T} R\left(K_{X}+B / T\right), B^{c}:=\phi_{*} B\right) / T
$$

Then we have

$$
\left(X^{c}, B^{c}\right) \times{ }_{T}\{t\}=\left(\left(X_{t}\right)^{c},\left(B_{t}\right)^{c}\right)
$$

for all $t \in T$. In particular, all the fibers of the relative canonical model are (s)lc, hence $S 2$.

Positive and mixed characteristic results

Well known: \exists smooth projective families of surfaces $X \rightarrow$ Spec R such that $h^{0}\left(X_{K}, K_{X_{K}}\right)<h^{0}\left(X_{k}, K_{X_{k}}\right)$ (Lang '83, Katsura-Ueno '85, Suh '08).

Question (A.I.P.)

Let $(X, B) \rightarrow \operatorname{Spec} R$ be a "nice" projective family of integral normal pairs. Does $h^{0}\left(X_{K}, m\left(K_{X_{K}}+B_{K}\right)\right)=h^{0}\left(X_{k}, m\left(K_{X_{k}}+B_{k}\right)\right)$ hold for all $m \geq 0$ sufficiently divisible?

No: in any characteristic $p>0$ there are examples of

- $(X, B) \rightarrow$ Spec R projective families of minimal surface pairs of Kodaira dimension one such that A.I.P. fails.
- $(Y, D) \rightarrow$ Spec R log smooth projective families of plt 3-fold pairs of general type such that A.I.P. fails.
In both cases the log canonical divisor is semiample.

Positive and mixed characteristic results

Lemma
Let $X \rightarrow \operatorname{Spec} R$ be a contraction with integral normal fibers, let L be a semiample line bundle on X and let $f: X \rightarrow Y / R$ be the semiample contraction. TFAE:
(1) $h^{0}\left(X_{k}, L_{k}^{m}\right)=h^{0}\left(X_{K}, L_{K}^{m}\right)$ for all $m \geq 0$ divisible enough;
(2) $f_{k, *} \mathcal{O}_{X_{k}}=\mathcal{O}_{Y_{k}}$;
(3) (if L is big) Y_{k} is normal.

Proof sketch.
1 holds $\Rightarrow f_{t} S A$ cont of $L_{t} \forall t \in S$ PeeR. In porticulor $f_{t}+V_{X_{t}}=O_{Y_{t}} d Y_{t}$ is normal.

 \bar{Y}_{k} drays wand, them viviepel Zanshi's rain the $\Rightarrow h_{k}$ is an isomenthitm.

Pathologies in positive and mixed characteristic

Example (B-,'20)
E / R ell. curve, M nontrivial p-torsion line bundle such that $M_{k}=\mathcal{O}_{E_{k}}$. \mathbb{P}_{R}^{1} with $N=\mathcal{O}_{\mathbb{P}_{R}^{1}}(1)$, and homogeneous coordinates $[S: T]$.

$$
Z:=E \times_{R} \mathbb{P}_{R}^{1}, L^{R}:=M \boxtimes N, \sigma=1_{M} \boxtimes S^{p-1} T \in H^{0}\left(Z, L^{p}\right) .
$$

$X:=\left(Z\left[\sigma^{1 / p}\right]\right)^{\nu} \rightarrow Z$ normalized p-cover.
The induced orphism $f: X \rightarrow \mathbb{P}_{R}^{1}$ looks as follows:

$k\left(X_{t}\right)=-\infty \quad \forall t \in S H E R$
set set $B: f^{*}\left(\sum a_{i} P_{i}\right)$
$a_{i}>0$ sud enough \Rightarrow get $(X, B) \rightarrow$ sher family of tom: $x_{1}+B$ i attache pairs: $k_{x}+B$ is
semioumth of kodeire tim \& f is its SA-coutraction.

Pathologies in positive and mixed characteristic

Example (Kollár '22)

$X \rightarrow$ Spec R the family from the previous example, $\Lambda \geq 0$ on X such that $\left(X_{t}, \Lambda_{t}\right)$ is CY and terminal for all $t \in \operatorname{Spec} R$.
$L:=K_{X}+B$ with notation as before.
$Y:=\mathbb{P}\left(\mathcal{O}_{X}+A\right) \xrightarrow{\tau} X$, with mobile and fixed sections X_{∞} and X_{0}.
Let $\Lambda_{Y}:=\tau^{*} \Lambda, L_{Y}:=\tau^{*} L$, and let $X_{\infty}^{\prime} \in\left|2 X_{\infty}\right|_{\mathbb{Q}}, L_{Y}^{\prime} \in\left|L_{Y}\right|_{\mathbb{Q}}$ be general divisors.
Set $D:=X_{0}+X_{\infty}^{\prime}+\Lambda_{Y}+L_{Y}^{\prime}$, so that $(Y, D) \rightarrow \operatorname{Spec} R$ is a log smooth family of pit 3-fold pairs, and $K_{Y}+D \sim_{\mathbb{Q}} X_{\infty}+L_{Y}$ is semiample, with litaka fibration as follows:

Computation unity adjunction $\Rightarrow(T, D) \rightarrow$ SteeR trent satisfy A.I.P.

$$
\Rightarrow\left(Y^{C}\right)_{k_{2}} \text { is not noun }
$$

Pathologies in positive and mixed characteristic

Remark: The pair $\left(Y^{c}, D^{c}+\left(Y^{c}\right)_{k}\right)$ is (s)lc, however $\left(Y^{c}\right)_{k}$ is not $S 2$ (in particular, $\left(\left(Y^{c}\right)_{k},\left(B^{c}\right)_{k}\right)$ is not slc). The equivalence $\left(a^{\prime}\right) \Leftrightarrow\left(a^{\prime \prime}\right)$ no longer holds!

Fact: it can be shown that stable families in the sense of ($a^{\prime \prime}$) still form a separated functor.

Consequence: in positive and mixed characteristic the moduli functor of stable pairs $\overline{\mathcal{S}}_{n \geq 3, v}$ is no longer proper.

Pathologies in positive and mixed characteristic
On the positive side we have (assuming resolution of singularities):
Theorem (B-,'21)
Let $(X, B) \rightarrow$ Spec R be a projective family of normal integral kit 3-fold pairs. Assume $p>5$ and

- $K_{X_{k}}+B_{k}$ is nef; or
- X is \mathbb{Q}-factorial, and every non-canonical center V of $\left(X, B+X_{k}\right)$
such that $V \subset \mathbf{B}_{-}\left(K_{X}+B / R\right)$ is horizontal over $R . \circledast$
Then A.I.P. holds.
Proof sketch.

What next?

Maximalistic approach: enlarge the category of stable pairs to allow for more general limits.

Definition

We say X is quasi-demi-normal if it is reduced, $S 1$, at most nodal in codimension one, and the demi-normalization morphism $\tilde{X} \rightarrow X$ is an universal homeomorphism.

Question 1

Define quasi-stable pairs by replacing demi-normal with quasi-demi-normal. Is the functor $\overline{\mathcal{Q}}_{n, v}$ of quasi-stable pairs proper?

Takes care of Kollár's example, however quasi-stable-pairs of fixed volume are not bounded.

What next?

Example (Unboundedness)

Consider

$$
\varphi_{e}: S:=E \times \mathbb{P}^{1} \xrightarrow{\mathrm{pr}_{2}} \mathbb{P}^{1} \xrightarrow{F^{e}} \mathbb{P}^{1},
$$

and let $L_{e}:=\varphi_{e}^{*} \mathcal{O}(1)$, so that φ_{e} is induced by a base-point-free linear system $V_{e} \subset H^{0}\left(S, L_{e}\right)$.
Let $Z:=\mathbb{P}\left(\mathcal{O}_{S}+A\right) \xrightarrow{\tau} S$ be a \mathbb{P}^{1} bundle with mobile and fixed sections S_{∞} and S_{0} as before.
Let $m \geq 1$ be sufficiently divisible and let

$$
\Phi_{e}: Z \rightarrow Z_{e}
$$

be the morphism induced by $\tau^{*} V_{e} \otimes H^{0}\left(Z, m S_{\infty}\right)$.
Then $\left\{Z_{e}\right\}_{e \in \mathbb{N}}$ does not form a bounded family.

What next?

Minimalistic approach: restrict the stable pairs we consider, so that non- $S 2$ schemes are not allowed.

Definition

Let $\overline{\mathcal{S}}_{3, v}^{k / t} \subset \overline{\mathcal{Q S}}_{3, v}$ be the subfunctor of three-dimensional quasi-stable pairs (X, B) which are a limit of stable klt pairs.

Question 2

Let $(X, B) \in \overline{\mathcal{Q S}}_{3, v}$ and assume $p>5$. Is X an $S 2$ scheme?

Thank you for your attention

