Invariance of plurigenera and KSBA moduli in positive and mixed characteristic

lacopo Brivio

National Center for Theoretical Sciences

February 9, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2 Positive and mixed characteristic results

Notation

- *R* is an excellent DVR with residue field $k = k^{\text{perf}}$ of characteristic p > 0, and fraction field *K*.
- A pair (X, B) consists of a reduced, pure dimensional, G1, excellent scheme X over a field or DVR, and a Q-divisor B = ∑a_iB_i, where B_i are distinct prime divisors none of which is contained in Sing(X), and K_X + B is Q-Cartier (most of the time our pairs will be normal and integral). Note: we are not requiring X to be S2.
- A scheme is *demi-normal* if it is *S*2 and at worst nodal in codimension one.
- A family of pairs consists of a pair (X, B) and a flat morphism $X \to T$, where T is a regular one-dimensional scheme, such that (X_t, B_t) is a pair, for all $t \in T$.
- If X is an R-scheme, X_k, X_K will denote the closed and generic fiber, respectively. Same for subschemes, coherent sheaves,....
- Confuse notation between line bundles and Cartier divisors.

Definition

Let (X, B) be a proper pair over a field \mathbb{K} , and let m be a positive integer such that mB is integral. The m-plurigenus of (X, B) is $h^0(X, m(K_X + B)) := \dim_{\mathbb{K}} H^0(X, m(K_X + B)).$

Theorem (Siu '00, Berndtsson-Paun '12, Hacon-McKernan '14)

Let $\pi: (X, B) \to T$ be a projective family of normal integral complex pairs. Assume that

- π is log smooth and (X_t, B_t) is klt for all $t \in T$; or
- π is log smooth and (X_t, B_t) is lc and of general type for all $t \in T$; or

• (X_t, B_t) has canonical singularities for all $t \in T$.

Then $h^0(X_t, m(K_{X_t} + B_t))$ is independent of $t \in T$ for all $m \ge 0$ such that mB is integral.

Remarks:

• Equivalently, for all such $m \ge 0$ the restriction map

$$H^0(X, m(K_X + B)) \rightarrow H^0(X_t, m(K_{X_t} + B_t))$$

is surjective

- Heavily analytic proof (Ohsawa-Takegoshi's L²-extension theorem).
- Application to moduli spaces for varieties of general type.

KSBA moduli

- "Higher-dimensional version of moduli of weighted stable curves."
- Idea: moduli for integral lc pairs of general type (X, B), s.t. dim(X) = n and vol(K_X + B) = v. These have very poorly behaved moduli spaces (non-separated).
- Solution: to such (X, B) one can associate its log canonical model

$$\phi \colon (X,B) \dashrightarrow (X^c := \operatorname{Proj} R(K_X + B), B^c := \phi_* B),$$

where $R(K_X + B) := \bigoplus_{m \ge 0} H^0(X, \lfloor m(K_X + B) \rfloor)$ is the *canonical* ring of (X, B). This is still an lc pair and $K_{X^c} + B^c$ is now ample.

- Objects: (X, B) log canonical model of dimension n and volume v.
- Families: families of log canonical models (X, B) → T of volume v and dimension n.
- The corresponding moduli functor S_{n,v} is separated but not proper⇒ stable pairs.

Definition

A pair over a field of characteristic zero (X, B) is *slc* if

- X is demi-normal; and
- letting $\pi : \overline{X} \to X$ be the normalization, $\overline{D} \subset \overline{X}$ the double locus, and $\overline{B} := \pi^{-1}(B)$, then $(\overline{X}, \overline{B} + \overline{D})$ is lc.

If (X, B) is slc, projective, and $K_X + B$ is ample, we call it a *stable pair*. A *stable family* is a pair (X, B) with a flat proper morphism $\pi : X \to T$ such that

A D N A 目 N A E N A E N A B N A C N

(a')
$$(X_t, B_t)$$
 is slc for all $t \in T$; or equivalently

a")
$$(X, B + X_t)$$
 is slc for all $t \in T$; and

(b) $K_X + B$ is π -ample.

Theorem (Kollár, Hacon-Xu, Hacon-McKernan-Xu,...)

Over the complex numbers, the functor $\overline{S}_{n,v}$ of stable pairs is representable, separated, proper, bounded, and it admits a projective coarse moduli space.

Remark: Siu's theorem \implies functoriality of log canonical models.

Let $(X, B) \to T$ be a log smooth family of lc pairs of general type. Consider the relative canonical model over T

$$\phi\colon (X,B) \dashrightarrow (X^c := \operatorname{Proj}_T R(K_X + B/T), B^c := \phi_* B)/T.$$

Then we have

$$(X^{c}, B^{c}) \times_{T} \{t\} = ((X_{t})^{c}, (B_{t})^{c})$$

for all $t \in T$. In particular, all the fibers of the relative canonical model are (s)lc, hence S2.

Well known: \exists smooth projective families of surfaces $X \to \text{Spec}R$ such that $h^0(X_K, K_{X_K}) < h^0(X_k, K_{X_k})$ (Lang '83, Katsura-Ueno '85, Suh '08).

Question (A.I.P.)

Let $(X, B) \rightarrow \text{Spec}R$ be a "nice" projective family of integral normal pairs. Does $h^0(X_K, m(K_{X_K} + B_K)) = h^0(X_k, m(K_{X_k} + B_k))$ hold for all $m \ge 0$ sufficiently divisible?

No: in any characteristic p > 0 there are examples of

- (X, B) → SpecR projective families of minimal surface pairs of Kodaira dimension one such that A.I.P. fails.
- (Y, D) → SpecR log smooth projective families of plt 3-fold pairs of general type such that A.I.P. fails.

In both cases the log canonical divisor is semiample.

Lemma

Let $X \to \text{Spec}R$ be a contraction with integral normal fibers, let L be a semiample line bundle on X and let $f : X \to Y/R$ be the semiample contraction. TFAE:

• $h^0(X_k, L_k^m) = h^0(X_K, L_K^m)$ for all $m \ge 0$ divisible enough;

$$f_{k,*}\mathcal{O}_{X_k}=\mathcal{O}_{Y_k};$$

Proof sketch.

1 holds
$$\Rightarrow ft sh cart of le Vtespeer. In portroviar $f_{1,1} \cup_{X_{t}} = \bigcup_{t \in X_{t}} A T_{t}$ is normal.
 $(2 \Rightarrow 1) \quad L \sim_{O} f^{*}A A angle O div l h^{\circ}(X_{t}, L_{t}^{\circ}) = h^{\circ}(T_{t}, f_{1,1} \cup_{X_{t}} \otimes \bigcup_{v_{t}} (\mathbf{n}A_{t})) (f_{vointe})$
 $(3 \Rightarrow 2) \quad f_{k} \colon X_{k} \xrightarrow{T_{k}} T_{k} \xrightarrow{G_{k}} T_{k} \xrightarrow{\text{Stein}} = h^{\circ}(T_{t}, \mathbf{n}A_{t}) \qquad (hy 2)$
 $\overline{T_{k}} \text{ always normal, then viewon sylvernal}$
 $\overline{T_{k}} \text{ always normal, then viewon sylvernal}$
 $\overline{T_{k}} \text{ is in Thun $\Rightarrow h_{k}$ is an reasonart in flat families.$$$

Example (B-,'20)

E/R ell. curve, M nontrivial p-torsion line bundle such that $M_k = \mathcal{O}_{E_k}$. \mathbb{P}^1_R with $N = \mathcal{O}_{\mathbb{P}^1_R}(1)$, and homogeneous coordinates [S:T]. $Z := E \times_R \mathbb{P}^1_R$, $L := M \boxtimes N$, $\sigma = 1_M \boxtimes S^{p-1}T \in H^0(Z, L^p)$. $X := (Z[\sigma^{1/p}])^{\nu} \to Z$ normalized p-cover. The induced morphism $f: X \to \mathbb{P}^1_R$ looks as follows:

Example (Kollár '22)

 $X \to \operatorname{Spec} R$ the family from the previous example, $\Lambda \ge 0$ on X such that (X_t, Λ_t) is CY and terminal for all $t \in \operatorname{Spec} R$. $L := K_X + B$ with notation as before. $Y := \mathbb{P}(\mathcal{O}_X + A) \xrightarrow{\tau} X$, with mobile and fixed sections X_{∞} and X_0 . Let $\Lambda_Y := \tau^*\Lambda$, $L_Y := \tau^*L$, and let $X'_{\infty} \in |2X_{\infty}|_{\mathbb{Q}}, L'_Y \in |L_Y|_{\mathbb{Q}}$ be general divisors.

Set $D := X_0 + X'_{\infty} + \Lambda_Y + L'_Y$, so that $(Y, D) \to \text{Spec}R$ is a log smooth family of plt 3-fold pairs, and $K_Y + D \sim_{\mathbb{Q}} X_{\infty} + L_Y$ is semiample, with litaka fibration as follows:

Camp Hotion very adjunction => (T, O) -> 8fack doom't sotrofy A.I.P. > (Y') to not nous.

Remark: The pair $(Y^c, D^c + (Y^c)_k)$ is (s)lc, however $(Y^c)_k$ is not S2 (in particular, $((Y^c)_k, (B^c)_k)$ is not slc). The equivalence $(a') \Leftrightarrow (a'')$ no longer holds!

Fact: it can be shown that stable families in the sense of (a'') still form a separated functor.

Consequence: in positive and mixed characteristic the moduli functor of stable pairs $\overline{S}_{n\geq 3,\nu}$ is no longer proper.

Pathologies in positive and mixed characteristic

On the positive side we have (assuming resolution of singularities):

Theorem (B-,'21)

Let $(X, B) \rightarrow \text{Spec}R$ be a projective family of normal integral klt 3-fold pairs. Assume p > 5 and

- $K_{X_k} + B_k$ is nef; or
- X is Q-factorial, and every non-canonical center V of $(X, B + X_k)$ such that $V \subset \mathbf{B}_-(K_X + B/R)$ is horizontal over R. \mathfrak{F}

Then A.I.P. holds.

Proof sketch.

Maximalistic approach: enlarge the category of stable pairs to allow for more general limits.

Definition

We say X is **quasi-demi-normal** if it is reduced, S1, at most nodal in codimension one, and the demi-normalization morphism $\tilde{X} \to X$ is an universal homeomorphism.

Question 1

Define **quasi-stable pairs** by replacing demi-normal with quasi-demi-normal. Is the functor $\overline{QS}_{n,v}$ of quasi-stable pairs proper?

Takes care of Kollár's example, however quasi-stable-pairs of fixed volume are not bounded.

Example (Unboundedness)

Consider

$$\varphi_e\colon S:=E\times\mathbb{P}^1\xrightarrow{\mathsf{pr}_2}\mathbb{P}^1\xrightarrow{F^e}\mathbb{P}^1,$$

and let $L_e := \varphi_e^* \mathcal{O}(1)$, so that φ_e is induced by a base-point-free linear system $V_e \subset H^0(S, L_e)$. Let $Z := \mathbb{P}(\mathcal{O}_S + A) \xrightarrow{\tau} S$ be a \mathbb{P}^1 bundle with mobile and fixed sections S_∞ and S_0 as before. Let $m \ge 1$ be sufficiently divisible and let

$$\Phi_e \colon Z \to Z_e$$

A D N A 目 N A E N A E N A B N A C N

be the morphism induced by $\tau^* V_e \otimes H^0(Z, mS_\infty)$. Then $\{Z_e\}_{e \in \mathbb{N}}$ does not form a bounded family. Minimalistic approach: restrict the stable pairs we consider, so that non-S2 schemes are not allowed.

Definition

Let $\overline{\mathcal{S}}_{3,\nu}^{klt} \subset \overline{\mathcal{QS}}_{3,\nu}$ be the subfunctor of three-dimensional quasi-stable pairs (X, B) which are a limit of stable klt pairs.

Question 2

Let $(X, B) \in \overline{QS}_{3,v}$ and assume p > 5. Is X an S2 scheme?

Thank you for your attention

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ