Numerical methods for working with polynomial systems

Dan Bates US Naval Academy

U Nottingham Algebraic Geometry Seminar
II May 2023

Motivation

Today's goal:
Introduce the various tools of numerical algebraic geometry (NAG), in case they might be helpful to you.

Motivation

Today's goal:
Introduce the various tools of numerical algebraic geometry (NAG), in case they might be helpful to you.

First example:
What are the solutions of the following polynomial system?

$$
f=\left[\begin{array}{c}
\left(y-x^{2}\right)\left(x^{2}+y^{2}+z^{2}-1\right)(x-2) \\
\left(z-x^{3}\right)\left(x^{2}+y^{2}+z^{2}-1\right)(y-2) \\
\left(z-x^{3}\right)\left(y-x^{2}\right)\left(x^{2}+y^{2}+z^{2}-1\right)(z-2)
\end{array}\right]
$$

Motivation

First example:
What are the solutions of the following polynomial system?

$$
f=\left[\begin{array}{c}
\left(y-x^{2}\right)\left(x^{2}+y^{2}+z^{2}-1\right)(x-2) \\
\left(z-x^{3}\right)\left(x^{2}+y^{2}+z^{2}-1\right)(y-2) \\
\left(z-x^{3}\right)\left(y-x^{2}\right)\left(x^{2}+y^{2}+z^{2}-1\right)(z-2)
\end{array}\right]
$$

Some possible answers:

* Six irreducible components: a quadric surface (including a real sphere), a cubic curve, three lines, and a point.
*The varieties corresponding to six ideals in the prime decomposition of the ideal generated by these three polynomials.

Motivation

The numerical algebraic geometry answer

*The dimension and degree of each component, along with numerical approximations (to any accuracy) of points on each component.

Two points on the surface (100 digits):
(-0.44691874170235291402593188610841526425227612037757025087956132743338990441038 $0647845258282052961521515016038 \mathrm{e} 0-0.61027106702196055085775829858637827555299623$ 122115745065781712904591769584277930555751052456356332676221105 e 0 i, 0.130186783591153618246315571707107172353063370543126798291247040334221103460498 $43791220186062839003161843226 \mathrm{e} 1-0.9797631891954616377716585987110315815817548375$ 4924382806366007477291012750177378608011376259729818723123248 e-1 i, 0.195624822582750785283424400895290419183461513380547898566001915336427170760554 $27892290316223611073692908373 \mathrm{e} 0-0.7421827003933645822959459064358277029388028193$ 5139515678711527150051616817182335240552295390318031311036028 e 0 i)
(0.18691048268638625630313816944536120811395321809278456366684479081843202313727 $799953611320126942819039708996 e 1-0.226490845204459538609041495409730827634170922$ 46720177262052807338520510389147232300490374986170415492740129 e 1 i,
0.157050929897910174981144311097991768128742234018715255047892491902413735130286 $98617511572403647299128414405 \mathrm{e} 1+0.1152332076074893022864178090389066888656393959$ 8476518971113242702704015015753728828143353557479198507278926e1 i,
$-0.18125837219266375393338740703575349297308046885970078389249899843465635726264$ $537913689216211075646254996340 \mathrm{e} 1-0.133709855705737827168910651765975343791228921$ 48577601135972604026165978821952275526373960068495495133838546 e 1 i)

*************** Decomposition by Degree $* * * * * * * * * * * * * *$
Dimension 2: 1 classified component
degree 2: 1 component
Dimension 1: 4 classified components
degree 1: 3 components
degree 3: 1 component
Dimension 0: 1 classified component

```
degree 1: 1 component
```

Game Plan

I. Motivation + example
2. Numerical algebraic geometry tools

A. Homotopy continuation

B. Parameter homotopies
C. Numerical irreducible decomposition (NID)
D. Software options
3. Various applications

Homotopy continuation

$$
f(x, y)=\left[\begin{array}{c}
x^{2}(y+1) \\
(x-3)(y-1)
\end{array}\right] \quad \text { (target system) }
$$

Homotopy continuation

$$
f(x, y)=\left[\begin{array}{c}
x^{2}(y+1) \\
(x-3)(y-1)
\end{array}\right] \quad \text { (target system) }
$$

(start system) $\quad g(x, y)=\left[\begin{array}{l}x^{3}-1 \\ y^{2}-1\end{array}\right]$

Homotopy continuation

$$
\begin{gathered}
f(x, y)=\left[\begin{array}{c}
x^{2}(y+1) \\
(x-3)(y-1)
\end{array}\right] \quad \text { (target system) } \\
\uparrow \mathrm{t}=0 \\
H(x, y ; t)=\left[\begin{array}{c}
x^{2}(y+1)(1-t)+t\left(x^{3}-1\right) \\
(x-3)(y-1)(1-t)+t\left(y^{2}-1\right)
\end{array}\right] \quad \text { (homotopy) } \\
\lfloor\mathrm{t}=1 \\
\downarrow \\
\text { (start system) } \quad g(x, y)=\left[\begin{array}{l}
x^{3}-1 \\
y^{2}-1
\end{array}\right]
\end{gathered}
$$

Homotopy continuation

Given polynomial system $f: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ (the target system) homotopy continuation is a 3 -step process:
I. Choose and solve a polynomial system $g: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ (the start system) based on characteristics of $f(z)$ but relatively easy to solve.
2. Form the homotopy $H: \mathbb{C}^{N} \times \mathbb{C} \rightarrow \mathbb{C}^{N}$ given by

$$
H(z, t)=f(z) \cdot(1-t)+g(z) \cdot t
$$

so that $H(z, 1)=g(z)$ and $H(z, 0)=f(z)$.
3. Use numerical predictor-corrector methods to follow the solutions as t marches from 1 to 0 , one solution at a time.

Homotopy continuation

Homotopy continuation

Homotopy continuation

Homotopy continuation

* Skipping many details (predictor/corrector choices, non-square systems, polyhedral methods, adaptive steplength, adaptive precision, safety checks, endgames, certification, etc.)

If you want more details:
DB-Hauenstein-Sommese-Wampler, Numerically solving polynomial systems with Bertini. SIAM, 2013.

Homotopy continuation

* Skipping many details (predictor/corrector choices, non-square systems, polyhedral methods, adaptive steplength, adaptive precision, safety checks, endgames, certification, etc.)

If you want more details:
DB-Hauenstein-Sommese-Wampler, Numerically solving polynomial systems with Bertini. SIAM, 2013.

* Bottom line:

Guaranteed (with probability one, modulo numerical issues) to find approximations to all solutions that are isolated over the complex numbers.

Homotopy continuation

* Skipping many details (predictor/corrector choices, non-square systems, polyhedral methods, adaptive steplength, adaptive precision, safety checks, endgames, certification, etc.)

If you want more details:
DB-Hauenstein-Sommese-Wampler, Numerically solving polynomial systems with Bertini. SIAM, 2013.

* Bottom line:

Guaranteed (with probability one, modulo numerical issues) to find approximations to all solutions that are isolated over the complex numbers.

* Fun tangent: What if you run homotopy continuation on a system with positive-dimensional components?
DB-Eklund-Hauenstein-Peterson, Excess intersections and numerical irreducible decompositions.
23rd International Symposium on Symbolic and Numerical Algorithms for Scientific Computing
(SYNASC), 2021

Game Plan

I. Motivation + example
2. Numerical algebraic geometry tools
A. Homotopy continuation

B. Parameter homotopies

C. Numerical irreducible decomposition (NID)
D. Software options
3. Various applications

Parameter homotopies

Main point: We can be particularly efficient if we need to solve many nearly identical polynomial systems (same support, different coefficients).

Parameter homotopies

Main point: We can be particularly efficient if we need to solve many nearly identical polynomial systems (same support, different coefficients).

Idea:

- q' (random complex parameter values)

(many points in some parameter spsace)

Parameter homotopies

Main point: We can be particularly efficient if we need to solve many nearly identical polynomial systems (same support, different coefficients).

Idea:

Parameter homotopies

Main point: We can be particularly efficient if we need to solve many nearly identical polynomial systems (same support, different coefficients).

Idea:

Parameter homotopies

Main point: We can be particularly efficient if we need to solve many nearly identical polynomial systems (same support, different coefficients).

Idea:

Parameter homotopies

Main point: We can be particularly efficient if we need to solve many nearly identical polynomial systems (same support, different coefficients).

Idea:

One option: try another angle.

Game Plan

I. Motivation + example
2. Numerical algebraic geometry tools
A. Homotopy continuation
B. Parameter homotopies
C. Numerical irreducible decomposition (NID)
D. Software options
3. Various applications

Numerical Irreducible Decomposition

$$
\left[\begin{array}{c}
\left(y-x^{2}\right)\left(x^{2}+y^{2}+z^{2}-1\right)(x-2) \\
\left(z-x^{3}\right)\left(x^{2}+y^{2}+z^{2}-1\right)(y-2) \\
\left(z-x^{3}\right)\left(y-x^{2}\right)\left(x^{2}+y^{2}+z^{2}-1\right)(z-2)
\end{array}\right]
$$

Solutions:

Dimension 2: One surface
Dimension I: Three lines and one cubic curve
Dimension 0: One point
We want to find some "witness points" on each of these sets.

Finding positive-dimensional solution sets

Recall: $Z=\mathcal{V}(f)=\bigcup_{i=0}^{D} Z_{i}=\bigcup_{i=0}^{D} \bigcup_{j \in \Lambda_{i}} Z_{i, j}$, where:
D is the dimension of Z,
i cycles through possible dimensions of irreducible components,
j is an index within dimension i , and the
$Z_{i, j}$ are the irreducible components.
(This is the irreducible decomposition of Z. .)

For each positive-dimensional irreducible component, $Z_{i, j}$, we aim to find numerical approximations to some number of generic points on $Z_{i, j}$.

Finding positive-dimensional solution sets

Key fact: Given irreducible component $Z_{i, j}$ of dimension i, for almost every choice of linear space L of codimension $i, Z_{i, j}$ intersects L in a set of a particular number of points. That number is the degree of $Z_{i, j}$.

So, to find $\operatorname{deg}\left(Z_{i, j}\right)$ points on $Z_{i, j}$, we can append i linears to f. We refer to this operation as slicing.

To find points on all components, we can just loop through all reasonable values of i.

Finding positive-dimensional solution sets

Problem 1: We could pick up points on higher-dimensional components. Problem 2: We could find points on multiple i-dimensional components.

Example: Suppose there are two curves and a surface. When we slice for the curves, we will find points on both curves and also on the surface.

Solution 1: Start at the top dimension and work your way down. Use a membership test on points in lower dimensions to see if they sit on the higher-dimensional components already found.

Solution 2: Carry out an equidimensional decomposition, using monodromy and the trace test.

Finding positive-dimensional solution sets

In fact, there is a clever way to string the homotopies together, called a cascade of homotopies. (There are more recent approaches, too.)

All told, the goal is to have deg $Z_{i, j}$ witness points on each component $Z_{i, j}$, yielding witness point set

$$
W_{i, j}=Z_{i, j} \cap L_{i} .
$$

For each component, put the linear functions, the witness points, and the original functions together and you have a witness set for the component:

$$
\mathcal{W}_{i, j}=\left(f, L_{i}, W_{i, j}\right)
$$

Then, the numerical irreducible decomposition is the union of all such sets for all irreducible components:

$$
\mathcal{W}=\bigcup_{i=0}^{D} \mathcal{W}_{i}=\bigcup_{i=0}^{D} \bigcup_{j \in \Lambda_{i}} \mathcal{W}_{i, j}
$$

Numerical Irreducible Decomposition

Cascade of homotopies for computing the numerical irreducible decomposition of the illustrative example.
[Omitting many details!]

Numerical Irreducible Decomposition

Bertini Classic I/O

(input file)

```
Dans-MacBook-Pro-2:tmp_19may16 bates$ more input
CONFIG
TrackType: 1;
END;
INPUT
variable_group x,y,z;
function f,g,h;
f = (y-x^2)*( (x^+\mp@subsup{y}{}{\wedge}2+\mp@subsup{z}{}{\wedge}2-1)*(x-2);
g = (z-\mp@subsup{x}{}{\wedge}3)*(\mp@subsup{x}{}{\wedge}+\mp@subsup{y}{}{\wedge}2+\mp@subsup{z}{}{\wedge}2-1)*(y-2);
h = (z-\mp@subsup{x}{}{\wedge}3)*(y-\mp@subsup{x}{}{\wedge}2)*(\mp@subsup{x}{}{\wedge}+\mp@subsup{y}{}{\wedge}2+\mp@subsup{z}{}{\wedge}2-1)*(z-2);
END;
```


Numerical Irreducible Decomposition

Bertini Classic I/O

(input file)
(screen output)

Dans-MacBook-Pro-2:tmp_19may16 bates\$ more input CONFIG

TrackType: 1;
END;
INPUT
variable_group x, y, z;
function $\mathrm{f}, \mathrm{g}, \mathrm{h}$;
$f=\left(y-x^{\wedge} 2\right) *\left(x^{\wedge}+y^{\wedge} 2+z^{\wedge} 2-1\right) *(x-2)$;
$\mathrm{g}=\left(\mathrm{z}-\mathrm{x}^{\wedge} 3\right) *\left(x^{\wedge}+\mathrm{y}^{\wedge} 2+z^{\wedge} 2-1\right) *(\mathrm{y}-2)$;
$h=\left(z-x^{\wedge} 3\right) *\left(y-x^{\wedge} 2\right) *\left(x^{\wedge}+y^{\wedge} 2+z^{\wedge} 2-1\right) *(z-2)$;
END;

*************** Decomposition by Degree $* * * * * * * * * * * * * *$
Dimension 2: 1 classified component
degree 2: 1 component
Dimension 1: 4 classified components
degree 1: 3 components
degree 3: 1 component
Dimension 0: 1 classified component

```
    degree 1: 1 component
```


Game Plan

I. Motivation + example
2. Numerical algebraic geometry tools
A. Homotopy continuation
B. Parameter homotopies
C. Numerical irreducible decomposition (NID)
D. Software options
3. Various applications

Software

Don't worry - this has been implemented:

- Bertini: S Amethyst, DB, J Hauenstein, A Sommese, CWampler
- HOM4PS-2/3: TY Li,TR Chen, et al.
- HomotopyContinuation.jl: P Breiding, S Timme
- NAG4M2: A Leykin
- Paramotopy: S Amethyst, DB, M Niemerg
- PHCpack: JVerschelde
- POLSYS GLP: LWatson, et al
- Others have come and gone, list may not be comprehensive.

Game Plan

I. Motivation + example
2. Numerical algebraic geometry tools
A. Homotopy continuation / basic solving
B. Parameter homotopies
C. Numerical irreducible decomposition (NID)
D. Software options

3. Various applications

Various applications

- Math:
- Algebraic geometry (e.g., recovering exactness)
- Dynamical systems
- Engineering:
- Kinematics (e.g., mechanism design)
- Optimal control
- Geolocation
- Science:
- Systems biology (e.g., chemical reaction networks)
- String theory
- Computer vision
(Others, too....)

Various applications

- Math:
- Algebraic geometry (e.g., recovering exactness)
- Dynamical systems
- Engineering:
- Kinematics (e.g., mechanism design)
- Optimal control
- Geolocation
- Science:
- Systems biology (e.g., chemical reaction networks)
- String theory
- Computer vision
(Others, too....)

Recovering Exactness

Given the point,

$$
\begin{aligned}
& x=0.7949333985, \\
& y=0.6066967050,
\end{aligned}
$$

what polynomials approximately vanish at this point?

Here's one I can compute: $x^{2}+y^{2}-I$

Recovering Exactness

Given some point(s), find some polynomials of fixed degree d with "small" integer coefficients that approximately vanish at the point(s).

For example, if we fix degree 2 and can refine our point(s) to more digits of accuracy, what can we find?
[I] Recovering exact results from inexact numerical data in algebraic geometry. DB, J Hauenstein, T McCoy, C Peterson, A Sommese.
Experimental Mathematics 22(I), 2013.
[2] Numerical irreducible decomposition over a number field. T.McCoy, C Peterson,A Sommese, J.Algebra \& its Applications 17(I0), 2018.

Recovering Exactness

Main idea from [I]:
Transform (x, y) into $V_{2}(x, y)=\left[1, x, y, x^{2}, x y, y^{2}\right]$.
(or homogeneous version)
Goal: Find $\mathbf{c}=\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right] \in \mathbb{Z}^{6}$ so that
$c \cdot V_{2}(x, y)=a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} x y+a_{6} y^{2} \approx 0$.
Q: How?
A: Lattice basis reduction methods are very good at this, e.g., LLL and its variants.

Recovering Exactness

$$
\begin{aligned}
& x=0.7949333985 \\
& y=0.6066967050
\end{aligned}
$$

Degree I: $[539,47,-950] \cdot[I, x, y] \approx 0$.
Degree 2: $[-I, 0,0, I, 0, I] \cdot\left[I, x, y, x^{2}, x y, y^{2}\right] \approx 0$.
Degree 3:
$[0,0,-I, 0,0,0,0, I, 0, I] \cdot\left[I, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{2}, y^{3}\right] \approx 0$.
Not terribly surprising: $-y+x^{2} y+y^{3}=y\left(x^{2}+y^{2}-I\right)$.
It's easy to expand $[-I, 0,0, I, 0, I]$ up to degree 3 and check that $[0,0,-I, 0,0,0,0, I, 0, I]$ is very much in its span.

Recovering Exactness

$$
\begin{aligned}
J= & <w^{3} x z^{2}-w^{3} y^{2} z+3 w x^{2} y z^{2}-3 w x y^{3} z+7 w x z^{4}-7 w y^{2} z^{3}+2 x y^{4} z-2 y^{6}, \\
& w^{4} x z-w^{3} y z^{2}+3 w^{2} x^{2} y z+7 w^{2} x z^{3}+2 w x y^{4}-3 w x y^{2} z^{2}-7 w y z^{4}-2 y^{5} z, \\
& w^{5} y z-w^{4} y z^{2}-w^{4} z^{3}+3 w^{3} x y^{2} z+7 w^{3} y z^{3}+w^{3} z^{4}-3 w^{2} x y^{2} z^{2}-3 w^{2} x y z^{3} \\
& +2 w^{2} y^{5}-7 w^{2} y z^{4}-7 w^{2} z^{5}+3 w x y z^{4}-2 w y^{5} z-2 w y^{4} z^{2}+7 w z^{6}+2 y^{4} z^{3}>
\end{aligned}
$$

Used Bertini to find a point on each irreducible component. Going up to degree 7 with 238 digits of precision yielded:

Component 1: $\quad z w^{3}+3 z y x w+7 z^{3} w+2 y^{4}$
Component 2: $-z x+y^{2}$

$$
\begin{aligned}
& -x w+z y \\
& -y w+z^{2}
\end{aligned}
$$

Component 3:x

$$
-w+z
$$

Same decomposition as computed via Gröbner bases in the paper where we found this example:

Direct methods for primary decomposition. D. Eisenbud, C. Huneke, W. Vasconcelos. Inventiones Mathematicae IIO, I992.

Various applications

- Math:
- Algebraic geometry (e.g., recovering exactness)
- Dynamical systems
- Engineering:
- Kinematics (e.g., mechanism design)
- Optimal control
- Geolocation
- Science:
- Systems biology (e.g., chemical reaction networks)
- String theory
- Computer vision
(Others, too....)

Kinematics

Kinematics: The study of mechanical linkages, ignoring forces.

All of these machines involve robotic arms. Other machines don't:

Kinematics

A 2R (2 links with a rotational joint) planar linkage:

Kinematics

Here's some notation:

Kinematics

The Pythagorean theorem gives us equations to find the angles, given the target:

To get the x-coordinate of the tool to p_{x} :
$L_{1} \cos \left(\alpha_{1}\right)+L_{2} \cos \left(\alpha_{2}\right)=p_{x}$
Ditto for y :
$L_{1} \sin \left(\alpha_{1}\right)+L_{2} \sin \left(\alpha_{2}\right)=P_{y}$

$\otimes\left(\mathrm{P}_{\mathrm{x}, \mathrm{Py}}\right)$

Kinematics

Now we can just solve the 2×2 system (with $L_{1}, L_{2}, P_{x}, P_{y}$ known numbers and variables α_{1}, α_{2}):
$L_{1} \cos \left(\alpha_{1}\right)+L_{2} \cos \left(\alpha_{2}\right)=p_{x}$
$L_{1} \sin \left(\alpha_{1}\right)+L_{2} \sin \left(\alpha_{2}\right)=p_{y}$
Problem: This isn't a polynomial system!
Trick: Rename the trig functions as variables and include trig identities to make a 4×4 polynomial system:
$\mathrm{L}_{1} \mathrm{C}_{1}+\mathrm{L}_{2} \mathrm{C}_{2}-\mathrm{P}_{\mathrm{x}}=0$
$L_{1} s_{1}+L_{2} s_{2}-P_{y}=0$
$\mathrm{c}_{1}{ }^{2}+\mathrm{s}^{2}-\mathrm{l}=0$
$\mathrm{C}_{2}{ }^{2}+\mathrm{s}_{2}{ }^{2}-\mathrm{I}=0$

Kinematics

$$
\begin{aligned}
& L_{1} c_{1}+L_{2} c_{2}-P_{x}=0 \\
& L_{1} s_{1}+L_{2} s_{2}-P_{y}=0 \\
& c_{1}{ }^{2}+s_{1}{ }^{2}-I=0 \\
& c_{2}^{2}+s_{2}^{2}-I=0
\end{aligned}
$$

For example, if both links have length one and we want to reach (I,I), the system becomes:

$$
\begin{aligned}
& c_{1}+c_{2}-I=0 \\
& s_{1}+s_{2}-I=0 \\
& c_{1}{ }^{2}+s_{1} 1^{2}-I=0 \\
& c_{2}{ }^{2}+s_{2}{ }^{2}-I=0
\end{aligned}
$$

© (I, I)
for which the solutions are $\left(c_{1}, s_{1}, c_{2}, s_{2}\right)=(0, I, I, 0)$ and $(I, 0,0, I)$.

Kinematics

$$
\begin{aligned}
& L_{1} c_{1}+L_{2} c_{2}-P_{x}=0 \\
& L_{1} s_{1}+L_{2} s_{2}-P_{y}=0 \\
& c_{1}{ }^{2}+s_{1}{ }^{2}-I=0 \\
& c_{2}^{2}+s_{2}^{2}-I=0
\end{aligned}
$$

For example, if both links have length one and we want to reach (I,I), the system becomes:

$$
\begin{aligned}
& c_{1}+c_{2}-I=0 \\
& s_{1}+s_{2}-I=0 \\
& c_{1}{ }^{2}+s_{1} 1^{2}-I=0 \\
& c_{2}{ }^{2}+s_{2}{ }^{2}-I=0
\end{aligned}
$$

for which the solutions are $\left(c_{1}, s_{1}, c_{2}, s_{2}\right)=(0, I, I, 0)$ and $(I, 0,0, I)$.

Mt. Everest

9-point path synthesis problem: How many mechanisms of a particular type (two planar 2R linkages connected to form a triangle) pass through nine specified points?
"Alt's problem" from 1923: Became known as Mt. Everest of Kinematics.
Partial solutions in 1963 (Roth \& Freudenstein), I989 (Tsai \& Lu).
First complete solution: 1992 (Wampler), using homotopy continuation.

Latest part of the story:
Brake, Hauenstein, Murray, Myszka,Wampler. J. Mechanisms Robotics, 2016.

See also Sommese-Wampler,Algebraic Kinematics, Acta Numerica 20, 20 II.

Various applications

- Math:
- Algebraic geometry (e.g., recovering exactness)
- Dynamical systems
- Engineering:
- Kinematics (e.g., mechanism design)
- Optimal control
- Geolocation
- Science:
- Systems biology (e.g., chemical reaction networks)
- String theory
- Computer vision
(Others, too....)

Chemical reaction networks

$$
0=\alpha v^{2}+\zeta u v+\beta \zeta^{2} u^{2}+\left(\alpha \epsilon_{0}-\alpha \epsilon_{0} \sigma-\alpha+\phi_{1} \zeta\right) u v^{2}+\left(\epsilon_{1} \zeta-\epsilon_{1} \zeta \sigma-\zeta+\beta \phi_{2} \zeta^{2}\right) u^{2} v
$$

$$
+\left(\beta \epsilon_{2} \zeta^{2}-\beta \epsilon_{2} \zeta^{2} \sigma-\beta \zeta^{2}\right) u^{3}+\alpha \phi_{0} v^{3}-\left(\alpha \epsilon_{0}+\phi_{1} \zeta\right) u^{2} v^{2}-\left(\epsilon_{1} \zeta+\beta \phi_{2} \zeta^{2}\right) u^{3} v
$$

$$
-\beta \epsilon_{2} \zeta^{2} u^{4}-\alpha \phi_{0} u v^{3}
$$

$$
0=\alpha v^{2}+\zeta u v+\beta \zeta^{2} u^{2}+\left(\alpha \phi_{0}-\alpha \phi_{0} \lambda-\alpha\right) v^{3}+\left(\phi_{1} \zeta-\phi_{1} \zeta \lambda-\zeta+\alpha \epsilon_{0}\right) u v^{2}
$$

$$
+\left(\beta \phi_{2} \zeta^{2}-\beta \phi_{2} \zeta^{2} \lambda-\beta \zeta^{2}+\epsilon_{1} \zeta\right) u^{2} v+\beta \epsilon_{2} \zeta^{2} u^{3}-\left(\alpha \epsilon_{0}+\phi_{1} \zeta\right) u v^{3}-\left(\epsilon_{1} \zeta+\beta \phi_{2} \zeta^{2}\right) u^{2} v^{2}
$$

$$
-\beta \epsilon_{2} \zeta^{2} u^{3} v-\alpha \phi_{0} v^{4}
$$

(project with C Nam, B Gyori, S Amethyst, J Gunawardena, started at AIM)

$$
\begin{aligned}
& S_{0}+E \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} Y_{1} \xrightarrow{k_{3}} Y_{2} \underset{k_{5}}{\stackrel{k_{4}}{\rightleftharpoons}} S_{1}+E \\
& S_{1}+E \underset{k_{7}}{\stackrel{k_{6}}{\rightleftharpoons}} Y_{3} \xrightarrow{k_{8}} Y_{4} \underset{k_{10}}{\stackrel{k_{9}}{\rightleftharpoons}} S_{2}+E \\
& S_{2}+F \underset{k_{12}}{\stackrel{k_{11}}{\rightleftharpoons}} Z_{4} \xrightarrow{k_{13}} Z_{3} \underset{k_{15}}{\stackrel{k_{14}}{\rightleftharpoons}} S_{1}+F \\
& S_{1}+F \underset{k_{17}}{\stackrel{k_{16}}{\rightleftharpoons}} Z_{2} \xrightarrow{k_{18}} Z_{1} \underset{k_{20}}{\stackrel{k_{19}}{\rightleftharpoons}} S_{0}+F .
\end{aligned}
$$

Chemical reaction networks

Basic stats

2 polynomials in 2 variables
8 non-dimensionalized parameters
(down from 13, thanks to Thomson-Gunawardena, 2009)
Generic root count: 7
Number of real solutions: 1 (monostable) or 3 (multistable)

Chemical reaction networks

Basic stats

2 polynomials in 2 variables
8 non-dimensionalized parameters
(down from 13, thanks to Thomson-Gunawardena, 2009)
Generic root count: 7
Number of real solutions: 1 (monostable) or 3 (multistable)

Chemical reaction networks

Basic stats

2 polynomials in 2 variables
8 non-dimensionalized parameters
(down from 13, thanks to Thomson-Gunawardena, 2009)
Generic root count: 7
Number of real solutions: 1 (monostable) or 3 (multistable)

Goal: Study the region of multistability:

- isolated points?
- measure zero?
- volume?
- change in volume as parameters change?
- connected?
- convex?

Chemical reaction networks

Goal: Study the region of multistability:

- isolated points: No! (tracked along a line segment)
- measure zero: No! (checked in nbhd of a point)
- volume: Depends
- change in volume as parameters change: Yes (see below)
- connected: No
- convex: No
> 100 million runs of Bertini
>1 billion in paper

σ	Number of uniform random samples	Number of multistable samples	Volume (\%)
1	10^{7}	0	0
1.5	10^{7}	20	0.0002
2	10^{7}	2315	0.02315
2.5	$6 \cdot 10^{6}$	5330	0.08883
3	$4 \cdot 10^{6}$	6568	0.1642
4	$4 \cdot 10^{6}$	11373	0.2843
5	$4 \cdot 10^{6}$	14588	0.3647
7	$4 \cdot 10^{6}$	18451	0.4613
10	$4 \cdot 10^{6}$	21401	0.5350
20	10^{5}	627	0.627
50	10^{5}	672	0.672
100	10^{5}	683	0.683
200	10^{5}		
500	10^{5}		

Final thoughts

Compared to symbolic methods, numerical algebraic geometry scales better with dimension, worse with degree. For more, see:

DB,W Decker, J Hauenstein, C Peterson, G Pfister, FO Schreyer, A Sommese, C Wampler. Comparison of probabilistic algorithms for analyzing the components of an affine algebraic variety. Applied Math and Computation 23I(C), 2014.

Numerical algebraic geometry might be useful for you at some point. I would be happy to help.

Final thoughts

- Open access is free for submissions NLT 3I Dec 23
- Focus is on computation and applications of algebraic or discrete structures, preferably with novel mathematics and novel algorithms...papers in numerical algebraic geometry could fit
- Open to special issues

- More established (first issue in 20I7)
- QI journal
- Seeks papers that contribute both mathematically and within some application(s)

THANK YOU!

Any opinions, findings, and conclusion or recommendations expressed in this material are those of the author and do not necessarily reflect the view of the US Naval Academy or the US government.

