- Introduction
- Creation of Vector Spaces and Arithmetic with Vectors
- Construction of a Vector Space
- VectorSpace(K, n) : Fld, RngIntElt -> ModTupFld
- KModule(K, n) : Fld, RngIntElt -> ModFld
- KMatrixSpace(K, m, n) : Fld, RngIntElt, RngIntElt -> ModMatFld
- Hom(V, W) : ModTupFld, ModTupFld -> ModMatFld
- Example ModFld_CreateQ6 (H29E1)
- Example ModFld_CreateK35 (H29E2)
- Construction of a Vector Space with Inner Product Matrix
- Construction of a Vector
- Deconstruction of a Vector
- Arithmetic with Vectors
- u + v : ModTupFldElt, ModTupFldElt -> ModTupFldElt
- - u : ModTupFldElt -> ModTupFldElt
- u - v : ModTupFldElt, ModTupFldElt -> ModTupFldElt
- x * u : FldElt, ModTupFldElt -> ModTupFldElt
- u / x : ModTupFldElt, FldElt -> ModTupFldElt
- NumberOfColumns(u) : ModTupFldElt -> RngIntElt
- Depth(u) : ModTupRngElt -> RngIntElt
- (u, v) : ModTupFldElt, ModTupFldElt -> FldElt
- IsZero(u) : ModElt -> BoolElt
- Norm(u) : ModTupFldElt -> FldElt
- Normalise(u) : ModTupFldElt -> ModTupFldElt
- Rotate(u, k) : ModTupFldElt, RngIntElt -> ModTupFldElt
- Rotate(~u, k) : ModTupFldElt, RngIntElt ->
- NumberOfRows(u) : ModTupFldElt -> RngIntElt
- Support(u) : ModTupFldElt -> { RngElt }
- TensorProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
- Trace(u, F) : ModTupFldElt, Fld -> ModTupFldElt
- Weight(u) : ModTupFldElt -> RngIntElt
- Example ModFld_Arithmetic (H29E5)
- Example ModFld_InnerProduct (H29E6)
- Indexing Vectors and Matrices
- Subspaces, Quotient Spaces and Homomorphisms
- Changing the Coefficient Field
- Basic Operations
- Reducing Vectors Relative to a Subspace
- Bases
- Operations with Linear Transformations
V2.28, 13 July 2023