Each of the functions in this family returns two values:
- (a)
- A permutation group G corresponding to the action of a designated
matrix group M on a vector space V; and
- (b)
- An indexed set of affine or projective points on which M acts,
such that the indexing gives the correspondence between this set and the G-set
of M.
Furthermore, most of the function in this family are parameterized by
two objects: the
degree and the
coefficient field of the matrix
group. These can be supplied in one of the following three forms:
- (i)
- Integers n and q corresponding to the degree and the
field GF(q) of M (GF(q2) in the case of the unitary groups).
- (ii)
- An integer n and a finite field K corresponding to the
degree and the coefficient field of M.
- (iii)
- A vector space V = Kn on which M naturally acts.
The Suzuki group, however, is only parametrised by the field, as the
degree is always four. As such, it can be described by the integer q,
the field K = GF(q), or the vector space K
4.
AGL(arguments)
AffineGeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
AffineGeneralLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
AffineGeneralLinearGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
AGL(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
AGL(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
AGL(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the affine general linear group G = AGL(n, q),
i.e., the group corresponding to
the action of GL(n, q) on the affine points of the
n-dimensional vector space V over K = GF(q).
The function returns:
- (a)
- The group G;
- (b)
- An indexed set giving the correspondence between
the affine points and the G-set of G.
ASL(arguments)
AffineSpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
AffineSpecialLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
AffineSpecialLinearGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
ASL(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ASL(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ASL(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the affine special linear group G = ASL(n, q),
i.e., the group corresponding to
the action of SL(n, q) on the affine points of the
n-dimensional vector space V over K = GF(q).
The function returns:
- (a)
- The group G;
- (b)
- An indexed set giving the correspondence between
the affine points and the G-set of G.
AGammaL(arguments)
AffineGammaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
AffineGammaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
AffineGammaLinearGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
AGammaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
AGammaL(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
AGammaL(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the affine gamma linear group G = AGammaL(n, q),
i.e., the group corresponding to
the action of GammaL(n, q) (the automorphism group of GL(n, q))
on the affine points of the n-dimensional vector space V over K = GF(q).
The function returns:
- (a)
- The group G;
- (b)
- An indexed set giving the correspondence between
the points and the G-set of G.
ASigmaL(arguments)
AffineSigmaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
AffineSigmaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
AffineSigmaLinearGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
ASigmaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ASigmaL(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ASigmaL(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the affine sigma linear group G = ASigmaL(n, q),
i.e., the group corresponding to
the action of SigmaL(n, q) (the automorphism group of SL(n, q))
on the affine points of the n-dimensional vector space V over K = GF(q).
The function returns:
- (a)
- The group G;
- (b)
- An indexed set giving the correspondence between
the points and the G-set of G.
ASp(arguments)
AffineSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
AffineSymplecticGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
AffineSymplecticGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
ASp(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ASp(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ASp(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the affine symplectic linear group G,
i.e., the group corresponding to
the action of Sp(n, q) on the affine points of the
n-dimensional vector space V over K = GF(q).
The function returns:
- (a)
- The group G;
- (b)
- An indexed set giving the correspondence between
the affine points and the G-set of G.
ASigmaSp(arguments)
AffineSigmaSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
AffineSigmaSymplecticGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
AffineSigmaSymplecticGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
ASigmaSp(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ASigmaSp(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ASigmaSp(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the affine sigma symplectic linear group G,
i.e., the group corresponding to
the action of Sp(n, q) on the affine points of the
n-dimensional vector space V over K = GF(q), plus the action of a
field automorphism.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set giving the correspondence between
the affine points and the G-set of G.
PGL(arguments)
ProjectiveGeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGeneralLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGeneralLinearGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PGL(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PGL(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PGL(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective general linear group G = PGL(n, q),
i.e., the group corresponding to
the action of GL(n, q) on the projective points of the
n-dimensional vector space V over K = GF(q),
where n ≥2 and q is a prime power.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
PSL(arguments)
ProjectiveSpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSpecialLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSpecialLinearGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PSL(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PSL(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PSL(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective special linear group G = PSL(n, q),
i.e., the group corresponding to
the action of SL(n, q) on the projective points of the
n-dimensional vector space V over K = GF(q),
where n ≥2 and q is a prime power.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
PGammaL(arguments)
ProjectiveGammaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGammaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGammaLinearGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PGammaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PGammaL(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PGammaL(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct an automorphism group G = PGammaL(n, q) of the
projective general linear group B = PGL(n, q),
by adding the field automorphisms of GF(q) to B.
The permutation action corresponds to the natural action on 1-dimensional
subspaces of the n-dimensional vector space V over the field
K = GF(q), where n ≥2 and q is a prime power.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set giving the correspondence between the points
and the G-set of G.
PSigmaL(arguments)
ProjectiveSigmaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSigmaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSigmaLinearGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PSigmaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PSigmaL(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PSigmaL(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct an automorphism group G = PSigmaL(n, q) of the
projective special linear group B = PSL(n, q),
by adding the field automorphisms of GF(q) to B.
The permutation action corresponds to the natural action on 1-dimensional
subspaces of the n-dimensional vector space V over the field
K = GF(q), where n ≥2 and q is a prime power.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set giving the correspondence between the points
and the G-set of G.
PGU(arguments)
ProjectiveGeneralUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGeneralUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGeneralUnitaryGroup(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PGU(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PGU(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PGU(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective general unitary group G = PGU(n, q)
corresponding to the n-dimensional vector space V over the field
K = GF(q2), where n ≥2 and q is a prime power.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
PSU(arguments)
ProjectiveSpecialUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSpecialUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSpecialUnitaryGroup(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PSU(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PSU(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PSU(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective special unitary group G = PSU(n, q)
corresponding to the n-dimensional vector space V over the field
K = GF(q2), where n ≥2 and q is a prime power.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of V, giving the correspondence between these vectors
and the G-set of G.
PGammaU(arguments)
ProjectiveGammaUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGammaUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGammaUnitaryGroup(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PGammaU(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PGammaU(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PGammaU(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct an automorphism group G = PGammaU(n, q) of the
projective general unitary group B = PGU(n, q),
by adding the field automorphisms of GF(q2) to B.
The permutation action corresponds to the natural action on 1-dimensional
subspaces of the n-dimensional vector space V over the field
K = GF(q2), where n ≥2 and q is a prime power.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set giving the correspondence between
the points and the G-set of G.
PSigmaU(arguments)
ProjectiveSigmaUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSigmaUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSigmaUnitaryGroup(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PSigmaU(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PSigmaU(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PSigmaU(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the automorphism group G = PSigmaU(n, q) of the
projective special unitary group B = PSU(n, q),
by adding the field automorphisms of GF(q2) to B.
The permutation action corresponds to the natural action on 1-dimensional
subspaces of the n-dimensional vector space V over the field
K = GF(q2), where n ≥2 and q is a prime power.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set giving the correspondence between
the points and the G-set of G.
PSp(arguments)
ProjectiveSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSymplecticGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSymplecticGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PSp(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PSp(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PSp(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective symplectic group G = PSp(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 4.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
PSigmaSp(arguments)
ProjectiveSigmaSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSigmaSymplecticGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSigmaSymplecticGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PSigmaSp(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PSigmaSp(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PSigmaSp(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the group G = PSigmaSp(n, q) of the
projective symplectic group PSp(n, q) extended by field automorphisms
of K = GF(q), where
V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 4.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set giving the correspondence between
the points and the G-set of G.
ProjectiveGeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGeneralOrthogonalGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGeneralOrthogonalGroup(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PGO(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PGO(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PGO(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective general orthogonal group G = PGO(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an odd integer greater than or equal to 3.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
ProjectiveGeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGeneralOrthogonalGroupPlus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGeneralOrthogonalGroupPlus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PGOPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PGOPlus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PGOPlus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective general orthogonal group G = PGO^ + (n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
ProjectiveGeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGeneralOrthogonalGroupMinus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveGeneralOrthogonalGroupMinus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PGOMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PGOMinus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PGOMinus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective general orthogonal group G = PGO^ - (n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
ProjectiveSpecialOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSpecialOrthogonalGroup(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSpecialOrthogonalGroup(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PSO(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PSO(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PSO(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective special orthogonal group G = PSO(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an odd integer greater than or equal to 3.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
ProjectiveSpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSpecialOrthogonalGroupPlus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSpecialOrthogonalGroupPlus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PSOPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PSOPlus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PSOPlus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective special orthogonal group G = PSO^ + (n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
ProjectiveSpecialOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSpecialOrthogonalGroupMinus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSpecialOrthogonalGroupMinus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PSOMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PSOMinus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
PSOMinus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective general orthogonal group G = PSO^ - (n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
POmega(arguments)
ProjectiveOmega(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveOmega(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveOmega(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
POmega(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
POmega(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
POmega(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective orthogonal group G = POmega(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an odd integer greater than or equal to 3.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
POmegaPlus(arguments)
ProjectiveOmegaPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveOmegaPlus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveOmegaPlus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
POmegaPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
POmegaPlus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
POmegaPlus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective orthogonal group G = POmega(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
POmegaMinus(arguments)
ProjectiveOmegaMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveOmegaMinus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveOmegaMinus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
POmegaMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
POmegaMinus(n, K) : RngIntElt, FldFin -> GrpPerm, { at ModTupFldElt atbrace
POmegaMinus(V): ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the projective orthogonal group G = POmega(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
PSz(arguments)
ProjectiveSuzukiGroup(q) : RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSuzukiGroup(K) : FldFin -> GrpPerm, { at ModTupFldElt atbrace
ProjectiveSuzukiGroup(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
PSz(q): RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PSz(K) : FldFin -> GrpPerm, { at ModTupFldElt atbrace
PSz(V) : ModTupRng -> GrpPerm, { at ModTupFldElt atbrace
Construct the permutation representation G = PSz(q) of the
Suzuki simple group Sz(q), given by its action on projective points,
where q is of the form 22n + 1.
If K is given, its cardinality is q.
If V is given, it must be 4-dimensional, and over K.
The function returns:
- (a)
- The group G;
- (b)
- An indexed set of the generators of the 1-dimensional
subspaces of K(n), giving the correspondence between these vectors
and the G-set of G.
Given a matrix group of degree d over a finite field F,
construct the semidirect product V:M, where V=Fd is the natural
M-module. The result G is a standard permutation group of degree
|V| = |F|d, where the second return value gives the correspondence
between the elements of V and the standard G-set.
V2.28, 13 July 2023