Let I and J be integral fractional ideals over the same order S in an étale algebra. Assume that I and J are coprime, that is, I + J=S. Then I ∩J = I.J and we have a canonical S-linear isomorphism frac(S)(I ∩J) simeq frac(S)(I) x frac(S)(J).
Given a sequence Is of ideals of S, pairwise coprime, and a sequence as of elements of S, it returns an element e such that e - as[i] ∈Is[i] for every i.
Given two coprime ideals I and J of S, two elements a, b ∈S, finds e such that (e - a) ∈I and (e - b) ∈J.
Given a sequence Is of N integral fractional S-ideals I1, ..., IN, pairwise coprime, returns a map S to SN representing the natural isomorphism (S /I) to (S /I1) x ... x (S /IN), where I=∏i Ii, and a map SN to S representing the inverse.
> _<x> := PolynomialRing(Integers()); > A := EtaleAlgebra((x^2+2)*(x^2+3)); > O := MaximalOrder(A); > I1 := PrimesAbove(2*O)[1]; > I2 := PrimesAbove(3*O)[1]; > toProd, fromProd := ChineseRemainderTheoremFunctions([I1,I2]); > toProd(One(A)); [ <1, 0>, <1, 0> ]