Construction

EtaleAlgebra(seq) : SeqEnum[FldNum] -> AlgEtQ
Given a sequence of number fields returns the étale algebra corresponding to the direct product. Note: the number fields with DefiningPolynomial of degree one should be created with the parameter DoLinearExtension set to true.

Example AlgEtQ_TwoCopiesOfQ (H42E1)

We now consider the Ãùtale algebra consisting of two copies of the rational field.
> _<x> := PolynomialRing(Integers());
> QQ := NumberField(x-1:DoLinearExtension);
> A := EtaleAlgebra([QQ,QQ]);
> a := PrimitiveElement(A); a;
<1, 2>
EtaleAlgebra(f) : RngUPolElt[RngInt] -> AlgEtQ
EtaleAlgebra(f) : RngUPolElt[FldRat] -> AlgEtQ
Given a squarefree polynomial over the integers or rationals returns the product of the number fields defined by the irreducible factors.
DirectProduct(seq) : SeqEnum[AlgEtQ] -> AlgEtQ, SeqEnum[Map], SeqEnum[Map]
Given a sequence of étale algebras over Q, returns their direct product, together with the natural inclusions and projections.
V2.29, 28 November 2025