Bibliography

Bas15
Romain Basson.
Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive.
PhD thesis, Université de Rennes 1, Rennes, 2015.

BD09
Nils Bruin and Kevin Doerksen.
The arithmetic of genus two curves with (4,4)-split Jacobians.
ArXiv preprint. http://arxiv.org/abs/0902.3480, 2009.

Bos00
Wieb Bosma, editor.
ANTS IV, volume 1838 of LNCS. Springer-Verlag, 2000.

Bru02
N. R. Bruin.
Chabauty methods and covering techniques applied to generalized Fermat equations, volume 133 of CWI Tract.
Stichting Mathematisch Centrum Centrum voor Wiskunde en Informatica, Amsterdam, 2002.
Dissertation, University of Leiden, Leiden, 1999.

BS09
Nils Bruin and Michael Stoll.
Two-cover descent on hyperelliptic curves.
Math. Comp., 78:2347--2370, 2009.

Car03
G. Cardona.
On the number of curves of genus 2 over a finite field.
Finite Fields and Their Applications, 9(4):505--526, 2003.

CF96
J.W.S. Cassels and E.V. Flynn.
Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2.
Cambridge University Press, Cambridge, 1996.

CN07
G. Cardona and E. Nart.
Zeta function and cryptographic exponent of supersingular curves of genus 2.
In Pairing-based cryptography---Pairing 2007, volume 4575 of Lecture Notes in Comput. Sci., pages 132--151. Springer, Berlin, 2007.

CNP05
G. Cardona, E. Nart, and J. Pujolas.
Curves of genus two over fields of even characteristic.
Mathematische Zeitschrift, 250:177--201, 2005.

CQ05
Gabriel Cardona and Jordi Quer.
Field of moduli and field of definition for curves of genus 2.
Lecture Notes Ser. Comput., 13:71--83, 2005.

Cre12
Brendan Creutz.
Explicit descent in the Picard group of a cyclic cover of the projective line.
In Everett Howe and Kiran Kedlaya, editors, ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium, volume 1 of OBS. Mathematics Sciences Publishers, 2012.

GH00
P. Gaudry and R. Harley.
Counting Points on Hyperelliptic Curves over Finite Fields.
In Bosma [Bos00], pages 313--332.

Got59
E. Gottschling.
Explizite Bestimmung der Randflächen des Fundamentalbereiches der Modulgruppe zweiten Grades.
Math. Annalen, 138:103--124, 1959.

Hol06
David Holmes.
Canonical heights on hyperelliptic curves.
Preprint http://arxiv.org/abs/1004.4503, 2006.

Hub06
Hendrik Hubrechts.
Point counting in families of hyperelliptic curves.
Preprint http://arxiv.org/abs/math.NT/0601438, 2006.

Igu60
J.-I. Igusa.
Arithmetic variety of moduli for genus two.
72:612--649, 1960.

Ked01
Kiran S. Kedlaya.
Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology.
J. Ramanujan Math. Soc., 16:323 -- 338, 2001.

KLL+18
Pinar Kil içer, Hugo Labrande, Reynald Lercier, Christophe Ritzenthaler, Jeroen Sijsling, and Marco Streng.
Plane quartics over Q with complex multiplication.
Acta Arith., 185(2):127--156, 2018.

LL
R. Lercier and D. Lubicz.
A Quasi-Quadratic Time Algorithm for Hyperelliptic Curve Point Counting.
to appear.

LR12
Reynald Lercier and Christophe Ritzenthaler.
Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects.
J. Algebra, 372:595--636, 2012.
http://dx.doi.org/10.1016/j.jalgebra.2012.07.054.

LRS12
R. Lercier, C. Ritzenthaler, and J. Sijsling.
Fast computation of isomorphisms of hyperelliptic curves and explicit descent.
In E. W. Howe and K. S. Kedlaya, editors, Proceedings of the Tenth Algorithmic Number Theory Symposium, pages 463--486. Mathematical Sciences Publishers, 2012.

LRS21
Reynald Lercier, Christophe Ritzenthaler, and Jeroen Sijsling.
Functionalities for genus 2 and 3 curves.
https://arxiv.org/abs/2102.04372, 2021.

Mae90
T. Maeda.
On the invariant fields of binary octavics.
Hiroshima Math. J., 20:619--632, 1990.

Mes91
J.-F. Mestre.
Construction de courbes de genre 2 à partir de leurs modules.
In T. Mora and C. Traverso, editors, Effective methods in algebraic geometry, volume 94 of Progr. Math., pages 313--334. Birkhäuser, 1991.
Proc. Congress in Livorno, Italy, April 17--21, 1990.

MS16
J.S. Müller and M. Stoll.
Canonical heights on genus two Jacobians.
Algebra & Number Theory, 10:2153--2234, 2016.
https://doi.org/10.2140/ant.2016.10.2153.

MSSV02
K. Magaard, T. Shaska, S. Shpectorov, and H. Völklein.
The locus of curves with prescribed automorphism group.
S=urikaisekikenky=usho K=oky=uroku, (1267):112--141, 2002.
Communications in arithmetic fundamental groups (Kyoto, 1999/2001).

Mül10a
Jan Steffen Müller.
Computing canonical heights on Jacobians.
PhD Thesis, Universität Bayreuth, 2010.
available at http://www.math.uni-hamburg.de/home/js.mueller/.

Mül10b
Jan Steffen Müller.
Explicit Kummer surface formulas for arbitrary characteristic.
LMS J. Comput. Math., 4:47--64, 2010.

Mum84
David Mumford.
Tata Lectures on Theta II, volume 43 of Progress in Mathematics.
Birkhäuser, 1984.

PS97
Bjorn Poonen and Ed Schaefer.
Explicit descent for Jacobians of cyclic covers of the projective line.
J. Reine Angew. Math., 488:141--188, 1997.

PS99
Bjorn Poonen and Michael Stoll.
The Cassels-Tate pairing on polarized abelian varieties.
Ann. of Math. (2), 150(3):1109--1149, 1999.

Shi67
T. Shioda.
On the Graded Ring of Invariants of Binary Octavics.
Am. Jour. Math., 89(4):1022--1046, 1967.

Sma97
N. P. Smart.
S-unit equations, binary forms and curves of genus 2.
Proc. London Math. Soc. (3), 75(2):271--307, 1997.

Smi05
Benjamin A. Smith.
Explicit endomorphisms and correspondences.
PhD thesis, University of Sydney, 2005.
http://hdl.handle.net/2123/1066.

Sto99
M. Stoll.
On the height constant for curves of genus two.
Acta Arithmetica, 90:183--201, 1999.
https://doi.org/10.4064/aa-90-2-183-201.

Sto01
Michael Stoll.
Implementing 2-descent for Jacobians of hyperelliptic curves.
Acta Arith., 98(3):245--277, 2001.

SV01
Tony Shaska and Völklein.
Elliptic subfields and automorphisms of genus 2 function fields.
Springer, 2001.
http://au.arxiv.org/abs/math.AG/0107142.

Ver02
F. Vercauteren.
Computing zeta functions of hyperelliptic curves over finite fields of characteristic 2.
In Advances in cryptology---CRYPTO 2002, volume 2442 of LNCS, pages 369--384. Springer, Berlin, 2002.

Wam99
P. Van Wamelen.
Examples of Genus Two CM Curves Defined over the Rationals.
Mathematics of Computation, 68:307--320, 1999.

Wet97
J. L. Wetherell.
Bounding the number of rational points on certain curves of high rank.
PhD thesis, U.C. Berkeley, 1997.

V2.28, 13 July 2023