In this example we construct the quiver and relations for the basic
algebra of the principal block of the alternating group A
7 over
GF(2).
> G := AlternatingGroup(7);
> A := BasicAlgebraOfPrincipalBlock(G, GF(2));
> A;
Basic algebra of dimension 19 over GF(2)
Number of projective modules: 3
Number of generators: 8
> quiv, rels, crels := QuiverAndRelations(A);
> quiv;
[ <1, 2>, <1, 3>, <2, 1>, <2, 2>, <3, 1> ]
> rels;
[
$.1*$.3*$.2*$.5 + $.2*$.5*$.1*$.3,
$.3*$.2*$.5*$.1 + $.4^2,
$.1*$.4,
$.3*$.1 + $.4^2,
$.4*$.3,
$.5*$.2,
$.1^2,
$.2*$.1,
$.4*$.1,
$.1*$.2,
$.2^2,
$.4*$.2,
$.2*$.3,
$.3^2,
$.5*$.3,
$.2*$.4,
$.3*$.4,
$.5*$.4,
$.1*$.5,
$.3*$.5,
$.4*$.5,
$.5^2
]
> crels;
[
$.1*$.3*$.2*$.5 + $.2*$.5*$.1*$.3,
$.3*$.2*$.5*$.1 + $.4^2,
$.1*$.4,
$.3*$.1 + $.4^2,
$.4*$.3,
$.5*$.2
]