- Introduction
- Automorphism Group and Isometry Testing
- AutomorphismGroup(L) : Lat -> GrpMat
- AutomorphismGroup(L, F) : Lat, [ AlgMatElt ] -> GrpMat
- AutomorphismGroup(F) : [ AlgMatElt ] -> GrpMat
- Example GLat_AutoAction (H33E1)
- Example GLat_AutoL19 (H33E2)
- IsIsometric(L, M) : Lat, Lat -> BoolElt, AlgMatElt
- IsIsometric(L, F1, M, F()2) : Lat, [ AlgMatElt ], Lat, [ AlgMatElt ] -> BoolElt, AlgMatElt
- IsIsometric(F1, F()2) : [ AlgMatElt ], [ AlgMatElt ] -> BoolElt, AlgMatElt
- Example GLat_Isom (H33E3)
- Automorphism Group and Isometry Testing over Fq[t]
- DominantDiagonalForm(X) : Mtrx[RngUPol] -> Mtrx, Mtrx, GrpMat, FldFin
- Example GLat_DDF-fqt (H33E4)
- AutomorphismGroup(G) : Mtrx[RngUPol] -> GrpMat, FldFin
- IsIsometric(G1, G2) : Mtrx[RngUPol], Mtrx[RngUPol] -> BoolElt, Mtrx, FldFin
- ShortestVectors(G) : Mtrx[RngUPol] -> SeqEnum
- ShortVectors(G, B) : Mtrx[RngUPol], RngIntElt -> SeqEnum
- Lattices from Matrix Groups
- Creation of G-Lattices
- Operations on G-Lattices
- Invariant Forms
- Endomorphisms
- G-invariant Sublattices
- Lattice of Sublattices
- Creating the Lattice of Sublattices
- Operations on the Lattice of Sublattices
- # V : LatLat -> RngIntElt
- V ! i: LatLat, RngIntElt -> LatLatElt
- V ! M: LatLat, Lat -> LatLatElt
- NumberOfLevels( V ) : LatLat -> RngIntElt
- Level(V, i) : LatLat, RngIntElt -> [ LatLatElt ]
- Levels(v) : LatLat -> [ [LatLatElt] ]
- Primes(V) : LatLat -> [ RngIntElt ]
- Constituents(V) : LatLat -> SeqEnum
- IntegerRing() ! e : RngInt, LatLatElt -> RngIntElt
- e + f : LatLatElt, LatLatElt -> LatLatElt
- e meet f : LatLatElt, LatLatElt -> LatLatElt
- e eq f : LatLatElt, LatLatElt -> BoolElt
- MaximalSublattices(e) : LatLatElt -> [ LatLatElt ], [ RngIntElt ]
- MinimalSuperlattices(e) : LatLatElt -> [ LatLatElt ] , [ RngIntElt ]
- Lattice(e) : SubModLatElt -> Lat
- BasisMatrix(e) : SubModLatElt -> Mtrx
- Example GLat_SublatticeLattice (H33E8)
- Example GLat_SublatticeLattice2 (H33E9)
- Bibliography
V2.28, 13 July 2023