This section involves elliptic curves with coefficients
in a function field k(C) where C is a regular projective curve over
some field k (usually a number field or a finite field).
The commands are largely parallel to those for elliptic
curves over the rationals; one can compute local information (Tate's
algorithm and so forth), a minimal model, the L-function,
the 2-Selmer group, and the Mordell--Weil group. This goes in order of decreasing
generality: Local information is available for curves over univariate function fields over any exact base
field, while at the other extreme Mordell--Weil groups are available only for
curves over rational function fields over finite fields for which the associated
surface is a rational surface. The generality of many of the commands will be expanded
in future releases.
- An Overview of Relevant Theory
- Local Computations
- BadPlaces(E) : CrvEll -> [ PlcFunElt ]
- Conductor(E) : CrvEll -> DivFunElt
- LocalInformation(E, Pl) : CrvEll[FldFun], PlcFunElt -> Tup, CrvEll
- LocalInformation(E) : CrvEll -> [ < Tup > ]
- KodairaSymbols(E) : CrvEll -> [ <SymKod, RngIntElt> ]
- NumberOfComponents(K) : SymKod -> RngIntElt
- MinimalModel(E) : CrvEll[FldFunG] -> CrvEll, MapIsoSch
- MinimalDegreeModel(E) : CrvEll[FldFunRat] -> CrvEll, Map, Map
- IsConstantCurve(E) : CrvEll[FldFunRat] -> BoolElt, CrvEll
- TraceOfFrobenius(E, p) : CrvEll[FldFunRat], RngElt -> BoolElt, CrvEll
- Elliptic Curves of Given Conductor
- Heights
- NaiveHeight(P) : PtEll -> FldPrElt
- Height(P) : PtEll -> FldRatElt
- LocalHeight(P, Pl) : PtEll, PlcFunElt -> FldPrElt
- HeightPairing(P, Q) : PtEll[FldFunG], PtEll[FldFunG] -> FldRatElt
- HeightPairingMatrix(S) : SeqEnum[PtEll[FldFunG]] -> AlgMatElt
- HeightPairingLattice(S) : [PtEll[FldFunG]] -> AlgMatElt, Map
- Basis(S) : [ PtEll ] -> [ PtEll ], ModMatAlgElt
- Basis(S, r, disc) : SeqEnum, RngIntElt, RngIntElt -> SeqEnum
- IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt
- The Torsion Subgroup
- The Mordell--Weil Group
- Two Descent
- The L-function and Counting Points
- LFunction(E) : CrvEll[FldFunRat] -> RngUPolElt
- LFunction(E, e) : CrvEll[FldFunRat], RngIntElt -> RngUPolElt
- AnalyticRank(E) : CrvEll[FldFunG] -> RngIntElt
- AnalyticInformation(E) : CrvEll[FldFunG] -> Tup
- Example CrvEllFldFun_sha3 (H131E2)
- Example CrvEllFldFun_rank2-continued (H131E3)
- NumberOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> RngIntElt
- NumbersOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> [ RngIntElt ], [ RngIntElt ]
- BettiNumber(E, i) : CrvEll, RngIntElt -> RngIntElt
- CharacteristicPolynomialFromTraces(traces) : [ Fld ] -> RngUPolElt
- CharacteristicPolynomialFromTraces(traces, d, q, i) : [ Fld ], RngIntElt, RngIntElt, RngIntElt -> RngUPolElt, RngUPolElt
- Action of Frobenius
- Extended Examples
- Bibliography
V2.28, 13 July 2023